ASV_Flattening = as.data.frame(t(rrarefy(t(ASV_table[,2:201]), min(colSums(ASV_table[,2:201])))))
时间: 2024-01-16 21:05:18 浏览: 86
Sorry, as an AI language model, I don't have access to the original data or context to fully understand this code snippet. However, based on my understanding, this code is trying to perform rarefaction on an ASV table, which is a table containing counts of different ASVs (amplicon sequence variants) in different samples.
The code first selects the ASV counts from the second to the 201st column of the ASV table (assuming the first column contains sample IDs or names). It then calculates the minimum count across all samples using `colSums()` function, and uses it as the rarefaction depth. The `rrarefy()` function is then used to rarefy the table, i.e., randomly subsample the counts in each sample to the rarefaction depth, and return a rarefied ASV table as a transposed data frame.
The resulting data frame is assigned to the variable `ASV_Flattening`. The purpose of this rarefaction step is to normalize the ASV counts across samples so that samples with different sequencing depth can be compared on an equal footing.
阅读全文