val_loss = history.history['val_loss'] 在5折交叉验证中,val_loss = history.history['val_loss'] KeyError: 'val_loss'是为什么错了,应该换成什么
时间: 2023-10-19 16:05:25 浏览: 152
在5折交叉验证中,我们通常会使用K折交叉验证来评估模型的性能。在每个折叠中,我们可以获取训练和验证的指标,如损失值(loss)和验证损失值(val_loss)。这些指标会存储在`history.history`字典中。
然而,错误`KeyError: 'val_loss'`表示在`history.history`字典中找不到键为`val_loss`的条目。这通常是由于模型没有记录验证损失值导致的。
如果你使用的是Keras库进行训练,你可以尝试将键改为`'val_loss'`或者查看`history.history`中的其他键,例如`'val_mse'`(验证均方误差)或`'val_accuracy'`(验证准确率),以找到相应的验证指标。
请注意,确保在模型训练期间配置并记录了相应的验证指标,以便在训练完成后可以访问它们。
相关问题
x_train = train.drop(['id','label'], axis=1) y_train = train['label'] x_test=test.drop(['id'], axis=1) def abs_sum(y_pre,y_tru): y_pre=np.array(y_pre) y_tru=np.array(y_tru) loss=sum(sum(abs(y_pre-y_tru))) return loss def cv_model(clf, train_x, train_y, test_x, clf_name): folds = 5 seed = 2021 kf = KFold(n_splits=folds, shuffle=True, random_state=seed) test = np.zeros((test_x.shape[0],4)) cv_scores = [] onehot_encoder = OneHotEncoder(sparse=False) for i, (train_index, valid_index) in enumerate(kf.split(train_x, train_y)): print('************************************ {} ************************************'.format(str(i+1))) trn_x, trn_y, val_x, val_y = train_x.iloc[train_index], train_y[train_index], train_x.iloc[valid_index], train_y[valid_index] if clf_name == "lgb": train_matrix = clf.Dataset(trn_x, label=trn_y) valid_matrix = clf.Dataset(val_x, label=val_y) params = { 'boosting_type': 'gbdt', 'objective': 'multiclass', 'num_class': 4, 'num_leaves': 2 ** 5, 'feature_fraction': 0.8, 'bagging_fraction': 0.8, 'bagging_freq': 4, 'learning_rate': 0.1, 'seed': seed, 'nthread': 28, 'n_jobs':24, 'verbose': -1, } model = clf.train(params, train_set=train_matrix, valid_sets=valid_matrix, num_boost_round=2000, verbose_eval=100, early_stopping_rounds=200) val_pred = model.predict(val_x, num_iteration=model.best_iteration) test_pred = model.predict(test_x, num_iteration=model.best_iteration) val_y=np.array(val_y).reshape(-1, 1) val_y = onehot_encoder.fit_transform(val_y) print('预测的概率矩阵为:') print(test_pred) test += test_pred score=abs_sum(val_y, val_pred) cv_scores.append(score) print(cv_scores) print("%s_scotrainre_list:" % clf_name, cv_scores) print("%s_score_mean:" % clf_name, np.mean(cv_scores)) print("%s_score_std:" % clf_name, np.std(cv_scores)) test=test/kf.n_splits return test def lgb_model(x_train, y_train, x_test): lgb_test = cv_model(lgb, x_train, y_train, x_test, "lgb") return lgb_test lgb_test = lgb_model(x_train, y_train, x_test) 这段代码运用了什么学习模型
这段代码运用了LightGBM模型(lgb)进行多分类任务的学习和预测。其中,使用了K折交叉验证(KFold)来划分训练集和验证集,避免过拟合和欠拟合。在训练过程中,使用了绝对误差和(abs_sum)作为损失函数。在LightGBM模型的参数设置上,使用了gbdt算法进行梯度提升决策树,num_class参数设置为4,表示有4个类别;num_leaves参数设置为2的5次方,表示叶节点的数量;feature_fraction和bagging_fraction是特征和样本的子抽样比例;learning_rate是学习率;early_stopping_rounds设置为200,表示在验证集上连续200次迭代中没有提高时,停止训练;n_jobs和nthread是并行训练的参数。最终,返回了测试集上的预测结果(lgb_test)。
解释以下代码:def cv_model(clf, train_x, train_y, test_x, clf_name): folds = 5 seed = 2021 kf = KFold(n_splits=folds, shuffle=True, random_state=seed) test = np.zeros((test_x.shape[0],4)) cv_scores = [] onehot_encoder = OneHotEncoder(sparse=False) for i, (train_index, valid_index) in enumerate(kf.split(train_x, train_y)): print('************************************ {} ************************************'.format(str(i+1))) trn_x, trn_y, val_x, val_y = train_x.iloc[train_index], train_y[train_index], train_x.iloc[valid_index], train_y[valid_index] if clf_name == "lgb": train_matrix = clf.Dataset(trn_x, label=trn_y) valid_matrix = clf.Dataset(val_x, label=val_y) params = { 'boosting_type': 'gbdt', 'objective': 'multiclass', 'num_class': 4, 'num_leaves': 2 ** 5, 'feature_fraction': 0.8, 'bagging_fraction': 0.8, 'bagging_freq': 4, 'learning_rate': 0.1, 'seed': seed, 'nthread': 28, 'n_jobs':24, 'verbose': -1, } model = clf.train(params, train_set=train_matrix, valid_sets=valid_matrix, num_boost_round=2000, verbose_eval=100, early_stopping_rounds=200) val_pred = model.predict(val_x, num_iteration=model.best_iteration) test_pred = model.predict(test_x, num_iteration=model.best_iteration) val_y=np.array(val_y).reshape(-1, 1) val_y = onehot_encoder.fit_transform(val_y) print('预测的概率矩阵为:') print(test_pred) test += test_pred score=abs_sum(val_y, val_pred) cv_scores.append(score) print(cv_scores) print("%s_scotrainre_list:" % clf_name, cv_scores) print("%s_score_mean:" % clf_name, np.mean(cv_scores)) print("%s_score_std:" % clf_name, np.std(cv_scores)) test=test/kf.n_splits return test
这段代码定义了一个函数`cv_model`,用于进行交叉验证和模型训练。函数的输入包括分类器`clf`,训练数据`train_x`和`train_y`,测试数据`test_x`,以及分类器名称`clf_name`。函数的输出为测试数据的预测结果。具体的实现步骤如下:
1. 将训练数据分为5折,设置随机种子为2021。
2. 初始化`test`数组,用于存储每一折的测试数据预测结果。
3. 使用`OneHotEncoder`进行标签编码,将分类器输出的标签转换为one-hot编码。
4. 针对每一折的训练数据和验证数据,使用指定的分类器进行模型训练。如果分类器名称为"lgb",则使用LightGBM进行训练。在LightGBM的训练过程中,使用了早停策略和交叉验证,以避免过拟合和提高模型的泛化性能。训练完成后,对验证数据进行预测,并将预测结果存储在`val_pred`中。同时,对测试数据进行预测,并将预测结果存储在`test_pred`中。
5. 将`val_y`和`val_pred`作为输入,调用`abs_sum`函数计算模型的评价指标。将评价指标存储在`cv_scores`中,并输出评价指标的值。
6. 将每一折的测试数据预测结果累加到`test`数组中。
7. 计算所有折的评价指标的平均值和标准差,并输出结果。
8. 将`test`数组除以折数,得到测试数据的平均预测结果,并将其作为函数的输出返回。
阅读全文