tent混沌映射粒子群代码
时间: 2023-10-20 09:03:04 浏览: 122
tent混沌映射粒子群代码是一种基于混沌映射和粒子群算法相结合的优化算法。下面是一个简单实现的示例代码:
```python
import random
import numpy as np
def tent_map(x):
if x < 0.5:
return 2 * x
else:
return 2 - 2 * x
def fitness_func(x):
# 优化目标函数,这里以最小化函数为例
return abs(x - 0.8)
def tent_pso(n_particles, n_iterations, omega, phi_p, phi_g):
# 初始化粒子群
swarm = np.random.uniform(0, 1, (n_particles, 1))
velocities = np.zeros((n_particles, 1))
best_positions = swarm.copy()
best_fitness = np.zeros((n_particles, 1))
global_best_position = np.zeros((1, 1))
global_best_fitness = float('inf')
# 迭代更新粒子位置和速度
for i in range(n_iterations):
for j in range(n_particles):
# 更新速度和位置
velocities[j] = omega * velocities[j] + phi_p * random.random() * (best_positions[j] - swarm[j]) + phi_g * random.random() * (global_best_position - swarm[j])
swarm[j] = tent_map(swarm[j] + velocities[j])
# 计算适应度
fitness = fitness_func(swarm[j])
# 更新个体最优
if fitness < best_fitness[j]:
best_positions[j] = swarm[j]
best_fitness[j] = fitness
# 更新全局最优
if fitness < global_best_fitness:
global_best_position = swarm[j]
global_best_fitness = fitness
# 输出当前迭代的最优解
print("Iteration {}: Best fitness = {}".format(i+1, global_best_fitness))
return global_best_position
if __name__ == "__main__":
best_position = tent_pso(n_particles=50, n_iterations=100, omega=0.7, phi_p=2.0, phi_g=2.0)
print("Best position found: {}".format(best_position))
```
这段代码使用tent_map函数作为混沌映射函数,fitness_func函数作为优化目标函数。首先初始化粒子群的位置和速度,并设定初始的个体最优位置和全局最优位置。然后进行迭代,更新粒子的位置和速度,并计算适应度。在每次迭代中,比较每个粒子的适应度与个体最优适应度,更新最优解。最后输出找到的最优位置。
阅读全文