生成一种基于Tent混沌映射初始化种群的改进粒子群算法的matlab代码
时间: 2023-06-10 11:08:54 浏览: 339
以下是基于Tent混沌映射初始化种群的改进粒子群算法的MATLAB代码:
```matlab
function [gbest, gbestFit, iter] = TentPSO(fitnessFunc, dim, lb, ub, maxIter, popSize, c1, c2, w)
% TentPSO: Improved Particle Swarm Optimization algorithm using Tent map initialization
% Inputs:
% fitnessFunc: function handle for the fitness function
% dim: number of dimensions
% lb: lower bounds of the search space, a vector of length dim
% ub: upper bounds of the search space, a vector of length dim
% maxIter: maximum number of iterations
% popSize: population size
% c1: cognitive parameter
% c2: social parameter
% w: inertia weight
% Outputs:
% gbest: global best solution
% gbestFit: fitness value of global best solution
% iter: number of iterations executed
% Initialize population using Tent map
rng('shuffle');
pop = zeros(popSize, dim);
for i = 1:popSize
pop(i, :) = lb + (ub - lb) * TentMap(rand(), dim);
end
% Initialize velocities
vel = zeros(popSize, dim);
pbest = pop;
pbestFit = zeros(popSize, 1);
for i = 1:popSize
pbestFit(i) = fitnessFunc(pbest(i, :));
end
% Initialize global best
[gbestFit, gbestIdx] = min(pbestFit);
gbest = pbest(gbestIdx, :);
% Run PSO iterations
for iter = 1:maxIter
% Update velocities and positions
vel = w * vel + c1 * rand(popSize, dim) .* (pbest - pop) ...
+ c2 * rand(popSize, dim) .* (gbest - pop);
pop = pop + vel;
% Check for out-of-bounds positions and correct them
for i = 1:popSize
pop(i, :) = max(pop(i, :), lb);
pop(i, :) = min(pop(i, :), ub);
end
% Evaluate fitness and update personal best
for i = 1:popSize
fit = fitnessFunc(pop(i, :));
if fit < pbestFit(i)
pbest(i, :) = pop(i, :);
pbestFit(i) = fit;
end
end
% Update global best
[minFit, minIdx] = min(pbestFit);
if minFit < gbestFit
gbestFit = minFit;
gbest = pbest(minIdx, :);
end
% Update inertia weight
w = w * 0.99;
end
end
function x = TentMap(x0, n)
% TentMap: Generate n Tent map values starting from x0
% Inputs:
% x0: initial value for Tent map
% n: number of values to generate
% Outputs:
% x: a vector of Tent map values
x = zeros(n, 1);
x(1) = x0;
for i = 2:n
if x(i-1) < 0.5
x(i) = 2 * x(i-1);
else
x(i) = 2 - 2 * x(i-1);
end
end
end
```
其中,`TentPSO`函数是主函数,接受上述输入参数并返回最优解、最优解的适应度值和迭代次数。`TentMap`函数用于生成Tent混沌映射序列,用于初始化种群。在`TentPSO`函数中,首先使用Tent混沌映射生成初始种群,然后按照标准粒子群算法的方式更新速度和位置,计算适应度值,更新个体最优解和全局最优解。最后,按照迭代次数递减的方式更新惯性权重。
阅读全文