import folium from folium.plugins import HeatMap import pandas as pd def draw_map(): # 读取txt文件 df = pd.read_table('file.txt') # 将数据保存为csv文件 data = df.to_csv('file.csv') # 获取经纬度范围 min_lat, max_lat = data['lat'].min(), data['lat'].max() min_lng, max_lng = data['lng'].min(), data['lng'].max() # 创建地图对象 m = folium.Map(location=[(min_lat + max_lat) / 2, (min_lng + max_lng) / 2], zoom_start=12) # 添加热力图层 HeatMap(data[['lat', 'lng']].values.tolist(), radius=10).add_to(m) # 保存地图 m.save('map.html')
时间: 2024-04-15 18:24:56 浏览: 194
这段代码使用了 Python 的 folium 库来创建一个地图,并在地图上添加热力图层。首先,代码导入了 folium、folium.plugins 和 pandas 库。然后,定义了一个名为 `draw_map()` 的函数。
在函数内部,首先使用 `pd.read_table()` 函数从名为 'file.txt' 的文件中读取数据,并将其保存到名为 `df` 的 DataFrame 对象中。接下来,使用 `df.to_csv()` 函数将数据保存为名为 'file.csv' 的 csv 文件。
然后,通过对数据进行分析,获取了经纬度的最小值和最大值,分别存储在 `min_lat`、`max_lat`、`min_lng` 和 `max_lng` 变量中。
接着,通过 `folium.Map()` 函数创建一个地图对象,设置地图的中心位置为经纬度范围的中点,初始缩放级别为 12。
然后,使用 `HeatMap()` 函数将经纬度数据转换成列表格式,并添加到地图对象 `m` 中作为热力图层。
最后,使用 `m.save()` 函数将地图保存为名为 'map.html' 的 HTML 文件。
请注意,此代码中的变量 `data` 可能会导致错误。在获取经纬度范围之后,您可以直接使用 `df[['lat', 'lng']]` 来获取包含经纬度的子数据集,而无需额外的保存步骤。
如果您有任何问题或需要进一步的帮助,请随时告诉我!
相关问题
folium 简单测试例子
### Folium 地理数据可视化库的简单测试示例
Folium 是基于 Leaflet.js 构建的地图可视化 Python 库,可以轻松创建交互式地图并嵌入到网页中。下面是一个简单的测试例子来展示如何使用 Folium 创建地理数据可视化的地图。
#### 安装依赖项
为了运行此代码片段,需要安装 `folium` 和其他必要的包:
```bash
pip install folium pandas geopandas
```
#### 导入库和准备数据
加载所需的库,并准备好要显示的数据集:
```python
import folium
from folium.plugins import MarkerCluster
import pandas as pd
import geopandas as gpd
```
#### 创建基础地图对象
初始化一个中心位于特定坐标的基础地图实例:
```python
m = folium.Map(location=[40.7128, -74.006], zoom_start=12)
```
#### 添加标记集群插件
通过 MarkerCluster 插件实现多个位置点的有效管理:
```python
marker_cluster = MarkerCluster().add_to(m)
locations = [[40.7128, -74.006], [40.730610, -73.935242]]
for loc in locations:
folium.Marker(
location=loc,
popup='The Waterfront',
icon=folium.Icon(color="green", icon="info-sign")
).add_to(marker_cluster)
```
#### 显示热力图层(可选)
如果想要添加热力图效果,则可以通过如下方式完成:
```python
heat_data = [[point.xy[1][0], point.xy[0][0]] for point in gdf.geometry]
HeatMap(heat_data).add_to(m)
```
#### 渲染最终结果
最后一步是保存 HTML 文件或将地图渲染出来查看效果:
```python
m.save('map.html')
m
```
上述代码展示了如何利用 Folium 来构建一张带有标注点以及可能存在的热点区域分布情况的地图[^1]。
基于dbscan算法对多个plt轨迹数据文件进行聚类,并且以folium高德地图可视化轨迹数据
好的,这里是基于 DBSCAN 算法对多个 .plt 轨迹数据文件进行聚类,并以 folium 高德地图可视化轨迹数据的代码实现:
首先,需要安装 folium、pandas、numpy、scikit-learn 库。
```python
!pip install folium pandas numpy scikit-learn
```
然后,按照以下步骤进行操作:
1. 导入所需库:
```python
import os
import pandas as pd
import numpy as np
from sklearn.cluster import DBSCAN
import folium
from folium.plugins import HeatMap
```
2. 定义函数来读取数据并将其转换为用于聚类的格式:
```python
def read_file(file_path):
data = pd.read_csv(file_path, skiprows=6, header=None, names=['lat', 'lon', 'zero', 'alt', 'days', 'date', 'time'])
data = data.drop(['zero', 'alt'], axis=1)
data = data.dropna()
data['datetime'] = pd.to_datetime(data['days'].astype(int).astype(str) + ' ' + data['time'])
data['lat'] = data['lat'].astype(float)
data['lon'] = data['lon'].astype(float)
data = data.drop(['days', 'date', 'time'], axis=1)
return np.array(data[['lat', 'lon']].values.tolist())
```
3. 定义函数来执行聚类:
```python
def perform_clustering(data, eps, min_samples):
db = DBSCAN(eps=eps, min_samples=min_samples, algorithm='ball_tree', metric='haversine').fit(np.radians(data))
cluster_labels = db.labels_
num_clusters = len(set(cluster_labels))
return cluster_labels, num_clusters
```
4. 定义函数来可视化聚类结果:
```python
def visualize_clusters(data, cluster_labels, num_clusters):
m = folium.Map(location=[data[:, 0].mean(), data[:, 1].mean()], zoom_start=12)
colors = ['red', 'blue', 'green', 'purple', 'orange', 'darkred',
'lightred', 'beige', 'darkblue', 'darkgreen', 'cadetblue',
'darkpurple', 'pink', 'lightblue', 'lightgreen', 'gray',
'black', 'lightgray']
for i in range(num_clusters):
cluster_data = data[cluster_labels == i]
if len(cluster_data) > 0:
HeatMap(cluster_data, radius=15, blur=10, max_zoom=13, gradient={0.4: colors[i % len(colors)]}).add_to(m)
return m
```
5. 遍历文件夹中的所有文件并聚类它们:
```python
file_path = 'geolife_sample' # 数据文件夹路径
eps = 100 # 聚类半径
min_samples = 10 # 最小样本数
for file_name in os.listdir(file_path):
if file_name.endswith('.plt'):
file_full_path = os.path.join(file_path, file_name)
data = read_file(file_full_path)
cluster_labels, num_clusters = perform_clustering(data, eps, min_samples)
m = visualize_clusters(data, cluster_labels, num_clusters)
html_file_path = file_full_path.replace('.plt', '.html')
m.save(html_file_path)
```
这将为每个 .plt 文件创建一个 HTML 文件,其中包含可视化的聚类结果。
希望这可以帮助您实现您的项目!
阅读全文
相关推荐
















