AttributeError: 'ChartLine' object has no attribute 'add_shape'
时间: 2023-10-02 09:03:49 浏览: 77
这个错误意味着在 ChartLine 对象中没有名为 add_shape 的属性。这可能是因为你使用了错误的方法名或试图访问一个不存在的方法。
请确保你正确地初始化了 ChartLine 对象,并且检查你使用的方法名是否正确。如果你是在使用第三方库或框架,可能需要查看相关文档以确定正确的方法和属性名。如果问题仍然存在,请提供更多的代码和上下文信息,以便我可以更好地帮助你解决问题。
相关问题
AttributeError: 'tensorrt_bindings.tensorrt.Builder' object has no attribute 'set_calibration_profile'
I apologize for the confusion. The `set_calibration_profile()` method was introduced in TensorRT 7.0. If you are using an earlier version of TensorRT, you can set the optimization profile using the `set_shape()` method on the input tensor of the network. Here is an example:
```python
import tensorrt as trt
# Create a builder object
builder = trt.Builder(trt.Logger(trt.Logger.INFO))
# Create a network object
network = builder.create_network()
# Add layers to the network
...
# Get the input tensor of the network
input_tensor = network.get_input(0)
# Set the input shape for the optimization profile
profile = builder.create_optimization_profile()
profile.set_shape(input_tensor.name, (1, 3, 224, 224), (8, 3, 224, 224), (4, 3, 224, 224))
builder.set_optimization_profile(profile)
# Build the engine
engine = builder.build_cuda_engine(network)
```
In this example, we create a network object and add layers to it. We then get the input tensor of the network using `network.get_input(0)`. We create an optimization profile using `builder.create_optimization_profile()`, and set the input shape for the profile using `profile.set_shape()`. We set the optimization profile for the builder using `builder.set_optimization_profile()`, and then build the engine using `builder.build_cuda_engine(network)`.
Note that the `set_shape()` method takes three arguments: the minimum shape, the maximum shape, and the preferred shape. You can adjust these shapes to suit your network's requirements.
AttributeError: 'Sequential' object has no attribute 'shape'
AttributeError: 'Sequential' object has no attribute 'shape' 这个错误通常是因为在使用神经网络模型时,尝试访问模型的形状(shape)属性,但是该属性在Sequential对象中是不存在的。可能的原因是你没有正确地定义或加载了模型。
为了解决这个问题,你可以检查以下几点:
1. 确保你正确地定义了神经网络模型。在使用Sequential模型时,你需要按照正确的顺序添加各层,并使用正确的参数进行配置。例如:
```python
from keras.models import Sequential
from keras.layers import Dense
model = Sequential()
model.add(Dense(64, activation='relu', input_dim=100))
model.add(Dense(64, activation='relu'))
model.add(Dense(10, activation='softmax'))
```
2. 确保你正确地加载了模型。如果你是从文件中加载模型,确保你使用了正确的加载方法。例如:
```python
from keras.models import load_model
model = load_model('model.h5')
```
3. 如果你正在使用自定义的模型,确保你在模型中正确地实现了`__getattr__`方法。例如:
```python
class MyModel:
def __init__(self):
self.layers = []
def add_layer(self, layer):
self.layers.append(layer)
def __getattr__(self, name):
return getattr(self.layers[-1], name)
model = MyModel()
model.add_layer(Dense(64, activation='relu', input_dim=100))
print(model.shape) # 这将打印出正确的形状
```
如果你仍然无法解决问题,请提供更多的代码细节,以便我能够更好地帮助你排查错误。
阅读全文