X_train, X_test, y_train, y_test = train_test_split(train_vectors, train_labels, test_size=0.2, random_state=42)
时间: 2023-06-26 15:05:11 浏览: 82
这段代码使用了scikit-learn库中的train_test_split函数,将数据集分成训练集和测试集。其中,train_vectors是输入数据的特征向量,train_labels是对应的标签。test_size=0.2表示将数据集划分为80%的训练集和20%的测试集。random_state=42是为了保证每次划分的结果一致。最终,X_train、y_train是训练集的特征向量和标签,X_test、y_test是测试集的特征向量和标签。这样可以用训练集训练模型,用测试集评估模型的性能。
相关问题
import pandas as pd from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.naive_bayes import GaussianNB from sklearn.model_selection import train_test_split from sklearn.feature_extraction.text import TfidfVectorizer # df1是经过预处理后的数据集,包含content_clean和category两列 X = df1['content_clean'] y = df1['category'] # 将数据集划分为训练集和测试集 train_X, test_X, train_y, test_y = train_test_split(X, y, test_size=0.2,) # 向量化文本 vectorizer = TfidfVectorizer() train_vectors = vectorizer.fit_transform(train_X) test_vectors = vectorizer.transform(test_X) # X_dense = X.toarray() classifier=GaussianNB().fit(train_vectors, train_labels)
在上述代码中,有一行代码 `classifier=GaussianNB().fit(train_vectors, train_labels)` 中的 `train_labels` 变量未被定义。应该将其改为 `train_y`,即 `classifier=GaussianNB().fit(train_vectors, train_y)`。
此外,代码中导入了两次 `TfidfVectorizer`,只需要导入一次即可:
```
import pandas as pd
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.naive_bayes import GaussianNB
from sklearn.model_selection import train_test_split
# df1是经过预处理后的数据集,包含content_clean和category两列
X = df1['content_clean']
y = df1['category']
# 将数据集划分为训练集和测试集
train_X, test_X, train_y, test_y = train_test_split(X, y, test_size=0.2,)
# 向量化文本
vectorizer = TfidfVectorizer()
train_vectors = vectorizer.fit_transform(train_X)
test_vectors = vectorizer.transform(test_X)
# 训练分类器
classifier = GaussianNB().fit(train_vectors, train_y)
```
这样修改后,代码应该可以正确运行了。
#target一共9个类别。由于是字符型,定义一个函数将target的类别标签转为index表示,方便后面计算交叉熵 def target2idx(targets): target_idx = [] target_labels = ['Class_1', 'Class_2', 'Class_3', 'Class_4', 'Class_5', 'Class_6', 'Class_7', 'Class_8', 'Class_9','Class_10'] for target in targets: target_idx.append(target_labels.index(target)) return target_idx #向量转化函数(提供参考,自行选择是否使用) def convert_to_vectors(c): m = len(c) k = np.max(c) + 1 y = np.zeros(m * k).reshape(m,k) for i in range(m): y[i][c[i]] = 1 return y #特征处理函数(提供参考,自行选择是否使用) def process_features(X): scaler = MinMaxScaler(feature_range=(0,1)) X = scaler.fit_transform(1.0*X) m, n = X.shape X = np.c_[np.ones((m, 1)), X] return X数据获取样例,可自行处理 X = np.array(data)[:,1:-1].astype(float) c = target2idx(data['target']) y = convert_to_vectors(c) #划分训练集和测试集比例在0.1-0.9之间 X_train, X_test, y_train, y_test, c_train, c_test = train_test_split(X, y, c, random_state = 0, test_size = 0.2)#模型训练及预测#计算指标,本指标使用加权的方式计算多分类问题,accuracy和recall相等,可将其原因写入报告 accuracy = accuracy_score(c_test, c_pred) precision = precision_score(c_test, c_pred,average = 'weighted') recall = recall_score(c_test, c_pred,average = 'weighted') f1 = f1_score(c_test, c_pred,average = 'weighted') print("accuracy = {}".format(accuracy)) print("precision = {}".format(precision)) print("recall = {}".format(recall)) print("f1 = {}".format(f1))补全代码
这段代码是一个完整的机器学习流程,包括了数据获取、数据预处理、模型训练和评估等步骤。以下是补全的代码:
```
# 导入必要的库和函数
import numpy as np
import pandas as pd
from sklearn.preprocessing import MinMaxScaler
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score
# 将目标变量中的类别标签转化为数字型的索引
def target2idx(targets):
target_idx = []
target_labels = ['Class_1', 'Class_2', 'Class_3', 'Class_4', 'Class_5', 'Class_6', 'Class_7', 'Class_8', 'Class_9','Class_10']
for target in targets:
target_idx.append(target_labels.index(target))
return target_idx
# 将分类问题中的目标变量转化为独热编码向量
def convert_to_vectors(c):
m = len(c)
k = np.max(c) + 1
y = np.zeros(m * k).reshape(m,k)
for i in range(m):
y[i][c[i]] = 1
return y
# 对特征进行预处理
def process_features(X):
scaler = MinMaxScaler(feature_range=(0,1))
X = scaler.fit_transform(1.0*X)
m, n = X.shape
X = np.c_[np.ones((m, 1)), X]
return X
# 数据获取及预处理
data = pd.read_csv('data.csv')
X = np.array(data)[:,1:-1].astype(float)
c = target2idx(data['target'])
y = convert_to_vectors(c)
X = process_features(X)
# 划分训练集和测试集
X_train, X_test, y_train, y_test, c_train, c_test = train_test_split(X, y, c, random_state = 0, test_size = 0.2)
# 模型训练
from sklearn.linear_model import LogisticRegression
clf = LogisticRegression(random_state=0, multi_class='multinomial', solver='newton-cg')
clf.fit(X_train, c_train)
# 模型预测
c_pred = clf.predict(X_test)
# 计算指标
accuracy = accuracy_score(c_test, c_pred)
precision = precision_score(c_test, c_pred,average = 'weighted')
recall = recall_score(c_test, c_pred,average = 'weighted')
f1 = f1_score(c_test, c_pred,average = 'weighted')
# 输出结果
print("accuracy = {}".format(accuracy))
print("precision = {}".format(precision))
print("recall = {}".format(recall))
print("f1 = {}".format(f1))
```
该代码首先读入数据,然后对目标变量进行转化,特征进行预处理,再将数据划分为训练集和测试集。接着,使用LogisticRegression模型进行训练,并进行预测。最后,计算分类指标,分别输出accuracy、precision、recall和f1值。
阅读全文