num_channels_in_encoder = 28 netG28 = Generator(num_channels_in_encoder).to(device) netG28.apply(weights_init)
时间: 2024-05-23 15:12:17 浏览: 80
这段代码看起来是定义了一个名为`netG28`的生成器模型,并将其初始化为具有`num_channels_in_encoder = 28`个输入通道。在这里,`Generator`可能是一个自定义的生成器类,可能实现了一些特定于应用程序的功能。然后,将`netG28`应用预定义的权重初始化函数`weights_init`进行初始化,并将其移动到指定的设备(可能是GPU)。
相关问题
class UNet(paddle.nn.Layer): def __init__(self, num_classes): super(UNet, self).__init__() self.conv_1 = paddle.nn.Conv2D(3, 32, kernel_size=3, stride=2, padding='same') self.bn = paddle.nn.BatchNorm2D(32) self.relu = paddle.nn.ReLU() in_channels = 32 self.encoders = [] self.encoder_list = [64, 128, 256] self.decoder_list = [256, 128, 64, 32] # 根据下采样个数和配置循环定义子Layer,避免重复写一样的程序 for out_channels in self.encoder_list: block = self.add_sublayer('encoder_{}'.format(out_channels), Encoder(in_channels, out_channels)) self.encoders.append(block) in_channels = out_channels self.decoders = [] # 根据上采样个数和配置循环定义子Layer,避免重复写一样的程序 for out_channels in self.decoder_list: block = self.add_sublayer('decoder_{}'.format(out_channels), Decoder(in_channels, out_channels)) self.decoders.append(block) in_channels = out_channels self.output_conv = paddle.nn.Conv2D(in_channels, num_classes, kernel_size=3, padding='same') def forward(self, inputs): y = self.conv_1(inputs) y = self.bn(y) y = self.relu(y) for encoder in self.encoders: y = encoder(y) for decoder in self.decoders: y = decoder(y) y = self.output_conv(y) return y怎么将该unet网络的层数改为5层
要将UNet网络的层数改为5层,可以按照以下步骤进行修改:
1. 将Encoder和Decoder的个数都增加到4个,分别对应下采样和上采样的层数,即encoder_list = [64, 128, 256, 512] 和 decoder_list = [512, 256, 128, 64, 32]。
2. 在网络的构造函数中增加一个新的Encoder和Decoder,代码如下:
```python
self.encoder_512 = Encoder(256, 512)
self.encoders.append(self.encoder_512)
self.decoder_32 = Decoder(64, 32)
self.decoders.insert(0, self.decoder_32)
```
这里新增了一个从256通道到512通道的Encoder和一个从64通道到32通道的Decoder,并分别加入到encoders和decoders中。
3. 最后,将输出层的输入通道数改为32,即将self.output_conv = paddle.nn.Conv2D(in_channels, num_classes, kernel_size=3, padding='same')中的in_channels改为32。
修改后的完整代码如下:
```python
class UNet(paddle.nn.Layer):
def __init__(self, num_classes):
super(UNet, self).__init__()
self.conv_1 = paddle.nn.Conv2D(3, 32,
kernel_size=3,
stride=2,
padding='same')
self.bn = paddle.nn.BatchNorm2D(32)
self.relu = paddle.nn.ReLU()
in_channels = 32
self.encoders = []
self.encoder_list = [64, 128, 256, 512]
self.decoder_list = [512, 256, 128, 64, 32]
self.decoders = []
# 根据下采样个数和配置循环定义子Layer,避免重复写一样的程序
for out_channels in self.encoder_list:
block = self.add_sublayer('encoder_{}'.format(out_channels),
Encoder(in_channels, out_channels))
self.encoders.append(block)
in_channels = out_channels
# 新增一个Encoder
self.encoder_512 = Encoder(256, 512)
self.encoders.append(self.encoder_512)
# 根据上采样个数和配置循环定义子Layer,避免重复写一样的程序
for out_channels in self.decoder_list:
block = self.add_sublayer('decoder_{}'.format(out_channels),
Decoder(in_channels, out_channels))
self.decoders.append(block)
in_channels = out_channels
# 新增一个Decoder
self.decoder_32 = Decoder(64, 32)
self.decoders.insert(0, self.decoder_32)
self.output_conv = paddle.nn.Conv2D(32,
num_classes,
kernel_size=3,
padding='same')
def forward(self, inputs):
y = self.conv_1(inputs)
y = self.bn(y)
y = self.relu(y)
for encoder in self.encoders:
y = encoder(y)
for decoder in self.decoders:
y = decoder(y)
y = self.output_conv(y)
return y
```
self.d_up_conv_1 = nn.Sequential( nn.Conv2d(in_channels=num_channels_in_encoder, out_channels=64, kernel_size=(3, 3), stride=(1, 1)), nn.LeakyReLU(), nn.ZeroPad2d((1, 1, 1, 1)), nn.ConvTranspose2d(in_channels=64, out_channels=128, kernel_size=(2, 2), stride=(2, 2)) )
这段代码定义了一个包含两个卷积层和一个反卷积层的神经网络模块。输入张量的通道数为num_channels_in_encoder,第一个卷积层输出通道数为64,卷积核大小为3x3,步长为1x1,使用LeakyReLU作为激活函数。然后进行Zero Padding,该操作在张量的上下左右各填充1个0,使得卷积后张量的大小不变。最后使用反卷积层,将64通道的特征图上采样为128通道的特征图,采样因子为2。
阅读全文