casrel模型实体关系联合抽取原理,BERT层编码
时间: 2024-01-23 20:02:39 浏览: 111
CASREL模型是一种基于句子级别的实体关系联合抽取模型,其主要原理是通过将实体和关系的抽取任务作为一个联合的序列标注问题,同时利用词嵌入和位置嵌入等特征来对实体和关系进行识别和分类。
具体来说,CASREL模型首先使用BERT层对输入的文本进行编码,得到每个词语的向量表示。然后,对于每个实体对,模型将两个实体之间的所有词语的向量拼接在一起,形成一个新的向量表示。接着,模型将这个向量输入到一个全连接层中进行分类,判断它们之间的关系类型。
在CASREL模型中,还使用了位置嵌入来辅助实体和关系的识别。具体来说,模型将输入文本中的每个词语与实体的位置关系、实体之间的位置关系以及其它词语的位置信息编码为向量表示,以提高模型对实体和关系的感知能力和识别准确度。
总之,CASREL模型通过将实体和关系的抽取任务作为一个联合的序列标注问题,并利用BERT层编码和位置嵌入等特征来进行实体关系联合抽取。
相关问题
BERT实体关系联合抽取Python代码
下面是一个简单的BERT实体关系联合抽取的Python代码示例:
```python
import torch
import transformers
import numpy as np
# 加载预训练的BERT模型和分词器
tokenizer = transformers.BertTokenizer.from_pretrained('bert-base-uncased')
model = transformers.BertForSequenceClassification.from_pretrained('bert-base-uncased', num_labels=2)
# 定义实体关系类别
labels = ['NO_RELATIONSHIP', 'RELATIONSHIP']
# 定义样本句子和实体位置
text = "The company Apple was founded by Steve Jobs and Steve Wozniak."
entity1 = (4, 9, 'Apple')
entity2 = (32, 42, 'Steve Jobs')
# 对样本进行分词和编码
encoded_dict = tokenizer.encode_plus(
text,
text_pair=None,
add_special_tokens=True,
truncation_strategy='longest_first',
max_length=128,
padding='max_length',
return_attention_mask=True,
return_tensors='pt'
)
# 获取实体位置的相对编码位置
entity1_start = np.where(encoded_dict['input_ids'] == tokenizer.encode(entity1[2], add_special_tokens=False)[0])[0][0]
entity1_end = entity1_start + len(tokenizer.encode(entity1[2], add_special_tokens=False)) - 1
entity2_start = np.where(encoded_dict['input_ids'] == tokenizer.encode(entity2[2], add_special_tokens=False)[0])[0][0]
entity2_end = entity2_start + len(tokenizer.encode(entity2[2], add_special_tokens=False)) - 1
# 构造输入张量
input_ids = encoded_dict['input_ids']
attention_mask = encoded_dict['attention_mask']
token_type_ids = encoded_dict['token_type_ids']
entity1_mask = [0] * len(input_ids)
for i in range(entity1_start, entity1_end + 1):
entity1_mask[i] = 1
entity2_mask = [0] * len(input_ids)
for i in range(entity2_start, entity2_end + 1):
entity2_mask[i] = 1
# 转换为PyTorch张量
input_ids = torch.tensor(input_ids).unsqueeze(0)
attention_mask = torch.tensor(attention_mask).unsqueeze(0)
token_type_ids = torch.tensor(token_type_ids).unsqueeze(0)
entity1_mask = torch.tensor(entity1_mask).unsqueeze(0)
entity2_mask = torch.tensor(entity2_mask).unsqueeze(0)
# 前向传播
outputs = model(
input_ids=input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
labels=None,
entity1_mask=entity1_mask,
entity2_mask=entity2_mask
)
# 预测实体关系类别
logits = outputs[0]
_, predicted = torch.max(logits, 1)
relationship = labels[predicted.item()]
print("实体1:", entity1[2])
print("实体2:", entity2[2])
print("实体关系:", relationship)
```
需要注意的是,上述代码仅供参考,具体实现可能因数据集、模型和任务不同而有所变化。
tensorflow框架下BERT实体关系联合抽取Python代码,bert4keras
以下是使用bert4keras实现BERT实体关系联合抽取的Python代码示例:
```python
import json
import numpy as np
from bert4keras.backend import keras, K
from bert4keras.layers import Loss
from bert4keras.models import build_transformer_model
from bert4keras.optimizers import Adam
from bert4keras.tokenizers import Tokenizer
from keras.layers import Dense
from keras.models import Model
# 模型参数
maxlen = 128
epochs = 10
batch_size = 16
learning_rate = 2e-5
categories = ["疾病和诊断", "影像检查", "实验室检验", "药物"]
num_classes = len(categories)
# BERT配置
config_path = '/path/to/bert_config.json'
checkpoint_path = '/path/to/bert_model.ckpt'
dict_path = '/path/to/vocab.txt'
# 加载数据
def load_data(filename):
D = []
with open(filename, encoding='utf-8') as f:
for l in f:
l = json.loads(l)
d = {'text': l['text'], 'spo_list': []}
for spo in l['spo_list']:
for o in spo['object']:
d['spo_list'].append((spo['subject'], spo['predicate'], o))
D.append(d)
return D
# 加载数据集
train_data = load_data('/path/to/train_data.json')
valid_data = load_data('/path/to/valid_data.json')
test_data = load_data('/path/to/test_data.json')
# 建立分词器
tokenizer = Tokenizer(dict_path, do_lower_case=True)
class data_generator:
"""数据生成器
"""
def __init__(self, data, batch_size=32, shuffle=True):
self.data = data
self.batch_size = batch_size
self.shuffle = shuffle
self.steps = len(self.data) // self.batch_size
if len(self.data) % self.batch_size != 0:
self.steps += 1
def __len__(self):
return self.steps
def __iter__(self):
while True:
idxs = list(range(len(self.data)))
if self.shuffle:
np.random.shuffle(idxs)
X1, X2, S, Y = [], [], [], []
for i in idxs:
d = self.data[i]
text = d['text'][:maxlen]
x1, x2 = tokenizer.encode(text)
s = np.zeros(len(text))
for spo in d['spo_list']:
subject = spo[0][:maxlen]
object = spo[2][:maxlen]
start = text.find(subject)
if start != -1:
end = start + len(subject) - 1
s[start:end+1] = 1
# 构建标注数据
predicate = spo[1]
y = np.zeros(num_classes)
y[categories.index(predicate)] = 1
X1.append(x1)
X2.append(x2)
S.append(s)
Y.append(y)
if len(X1) == 0:
continue
X1 = keras.preprocessing.sequence.pad_sequences(X1, maxlen=maxlen)
X2 = keras.preprocessing.sequence.pad_sequences(X2, maxlen=maxlen)
S = keras.preprocessing.sequence.pad_sequences(S, maxlen=maxlen)
Y = np.array(Y)
yield [X1, X2, S], Y
# 构建模型
bert_model = build_transformer_model(
config_path,
checkpoint_path,
model='bert',
return_keras_model=False,
)
output_layer = 'Transformer-%s-FeedForward-Norm' % (bert_model.num_hidden_layers - 1)
output = bert_model.get_layer(output_layer).output
output = Dense(num_classes, activation='sigmoid')(output)
model = Model(bert_model.input, output)
model.summary()
# 损失函数
class MultiLoss(Loss):
"""多任务学习的损失函数
"""
def compute_loss(self, inputs, mask=None):
y_true, y_pred = inputs
y_true = K.cast(y_true, y_pred.dtype)
loss = K.binary_crossentropy(y_true, y_pred)
return loss
loss = MultiLoss().compute_loss
# 优化器
optimizer = Adam(learning_rate)
# 编译模型
model.compile(loss=loss, optimizer=optimizer)
# 训练模型
train_generator = data_generator(train_data, batch_size)
valid_generator = data_generator(valid_data, batch_size)
test_generator = data_generator(test_data, batch_size)
model.fit_generator(
train_generator.forfit(),
steps_per_epoch=len(train_generator),
epochs=epochs,
validation_data=valid_generator.forfit(),
validation_steps=len(valid_generator)
)
# 评估模型
model.evaluate_generator(test_generator.forfit(), steps=len(test_generator))
# 保存模型
model.save_weights('/path/to/model.weights')
```
阅读全文