torch.from_numpy(signal).float()

时间: 2024-01-21 17:04:15 浏览: 25
This function converts a NumPy array to a PyTorch tensor with a floating-point data type. Specifically, it takes in a NumPy array called "signal" and returns a PyTorch tensor with the same data as "signal", but with a floating-point data type (i.e. each value will be a decimal instead of an integer). This function can be useful if you have data stored in a NumPy array and want to use it in a PyTorch model, since PyTorch tensors are the preferred data type for working with neural networks.
相关问题

class ResidualBlock(nn.Module): def init(self, in_channels, out_channels, dilation): super(ResidualBlock, self).init() self.conv = nn.Sequential( nn.Conv1d(in_channels, out_channels, kernel_size=3, padding=dilation, dilation=dilation), nn.BatchNorm1d(out_channels), nn.ReLU(), nn.Conv1d(out_channels, out_channels, kernel_size=3, padding=dilation, dilation=dilation), nn.BatchNorm1d(out_channels), nn.ReLU() ) self.attention = nn.Sequential( nn.Conv1d(out_channels, out_channels, kernel_size=1), nn.Sigmoid() ) self.downsample = nn.Conv1d(in_channels, out_channels, kernel_size=1) if in_channels != out_channels else None def forward(self, x): residual = x out = self.conv(x) attention = self.attention(out) out = out * attention if self.downsample: residual = self.downsample(residual) out += residual return out class VMD_TCN(nn.Module): def init(self, input_size, output_size, n_k=1, num_channels=16, dropout=0.2): super(VMD_TCN, self).init() self.input_size = input_size self.nk = n_k if isinstance(num_channels, int): num_channels = [num_channels*(2**i) for i in range(4)] self.layers = nn.ModuleList() self.layers.append(nn.utils.weight_norm(nn.Conv1d(input_size, num_channels[0], kernel_size=1))) for i in range(len(num_channels)): dilation_size = 2 ** i in_channels = num_channels[i-1] if i > 0 else num_channels[0] out_channels = num_channels[i] self.layers.append(ResidualBlock(in_channels, out_channels, dilation_size)) self.pool = nn.AdaptiveMaxPool1d(1) self.fc = nn.Linear(num_channels[-1], output_size) self.w = nn.Sequential(nn.Conv1d(num_channels[-1], num_channels[-1], kernel_size=1), nn.Sigmoid()) # 特征融合 门控系统 # self.fc1 = nn.Linear(output_size * (n_k + 1), output_size) # 全部融合 self.fc1 = nn.Linear(output_size * 2, output_size) # 只选择其中两个融合 self.dropout = nn.Dropout(dropout) # self.weight_fc = nn.Linear(num_channels[-1] * (n_k + 1), n_k + 1) # 置信度系数,对各个结果加权平均 软投票思路 def vmd(self, x): x_imfs = [] signal = np.array(x).flatten() # flatten()必须加上 否则最后一个batch报错size不匹配! u, u_hat, omega = VMD(signal, alpha=512, tau=0, K=self.nk, DC=0, init=1, tol=1e-7) for i in range(u.shape[0]): imf = torch.tensor(u[i], dtype=torch.float32) imf = imf.reshape(-1, 1, self.input_size) x_imfs.append(imf) x_imfs.append(x) return x_imfs def forward(self, x): x_imfs = self.vmd(x) total_out = [] # for data in x_imfs: for data in [x_imfs[0], x_imfs[-1]]: out = data.transpose(1, 2) for layer in self.layers: out = layer(out) out = self.pool(out) # torch.Size([96, 56, 1]) w = self.w(out) out = w * out # torch.Size([96, 56, 1]) out = out.view(out.size(0), -1) out = self.dropout(out) out = self.fc(out) total_out.append(out) total_out = torch.cat(total_out, dim=1) # 考虑w1total_out[0]+ w2total_out[1],在第一维,权重相加得到最终结果,不用cat total_out = self.dropout(total_out) output = self.fc1(total_out) return output优化代码

1. 代码中的注释最好用英文,这样可以方便其他国家的程序员阅读和理解。 2. 在ResidualBlock类中,应该将init()改为__init__(),这是Python中的一个特殊方法,用于初始化类的实例变量。 3. 对于VMD_TCN类中的layers部分,可以使用一个for循环来代替多次重复的代码。例如: ``` for i in range(len(num_channels)): dilation_size = 2 ** i in_channels = num_channels[i-1] if i > 0 else num_channels[0] out_channels = num_channels[i] self.layers.append(ResidualBlock(in_channels, out_channels, dilation_size)) ``` 4. 不建议在forward()函数中使用numpy数组,应该使用PyTorch张量来保证代码的可重复性和GPU加速。例如,将self.vmd(x)中的signal变量改为torch.tensor(signal, dtype=torch.float32)。 5. 对于全连接层的输入尺寸,可以使用num_channels[-1] * self.nk代替output_size * (self.nk + 1),这样可以避免使用self.nk + 1这个魔数。 6. 在vmd()函数中,x_imfs可以使用PyTorch张量来存储,而不是使用Python列表。例如,可以使用torch.zeros((self.nk+1, self.input_size))来创建一个张量,并将每个u[i]复制到对应的张量中。这样可以避免在循环中多次创建张量,提高代码的效率。 7. 在forward()函数中,可以使用torch.cat()函数来将所有输出张量连接起来,而不是使用Python列表。例如,可以将total_out定义为一个空的张量,然后在每次迭代中使用torch.cat()函数将输出张量连接到total_out中。这样可以避免在循环中多次分配内存,提高代码的效率。

如何解决Loading and preparing results... DONE (t=0.01s) creating index... index created! Running per image evaluation... Evaluate annotation type *bbox* DONE (t=0.44s). Accumulating evaluation results... Traceback (most recent call last): File "tools/train.py", line 133, in <module> main() File "tools/train.py", line 129, in main runner.train() File "/home/wangbei/anaconda3/envs/Object_mmdetection/lib/python3.8/site-packages/mmengine/runner/runner.py", line 1721, in train model = self.train_loop.run() # type: ignore File "/home/wangbei/anaconda3/envs/Object_mmdetection/lib/python3.8/site-packages/mmengine/runner/loops.py", line 102, in run self.runner.val_loop.run() File "/home/wangbei/anaconda3/envs/Object_mmdetection/lib/python3.8/site-packages/mmengine/runner/loops.py", line 366, in run metrics = self.evaluator.evaluate(len(self.dataloader.dataset)) File "/home/wangbei/anaconda3/envs/Object_mmdetection/lib/python3.8/site-packages/mmengine/evaluator/evaluator.py", line 79, in evaluate _results = metric.evaluate(size) File "/home/wangbei/anaconda3/envs/Object_mmdetection/lib/python3.8/site-packages/mmengine/evaluator/metric.py", line 133, in evaluate _metrics = self.compute_metrics(results) # type: ignore File "/home/wangbei/mmdetection(coco)/mmdet/evaluation/metrics/coco_metric.py", line 512, in compute_metrics coco_eval.accumulate() File "/home/wangbei/anaconda3/envs/Object_mmdetection/lib/python3.8/site-packages/pycocotools-2.0-py3.8-linux-x86_64.egg/pycocotools/cocoeval.py", line 378, in accumulate tp_sum = np.cumsum(tps, axis=1).astype(dtype=np.float) File "/home/wangbei/anaconda3/envs/Object_mmdetection/lib/python3.8/site-packages/numpy/__init__.py", line 305, in __getattr__ raise AttributeError(__former_attrs__[attr]) AttributeError: module 'numpy' has no attribute 'float'. `np.float` was a deprecated alias for the builtin `float`. To avoid this error in existing code, use `float` by itself. Doing this will not modify any behavior and is safe. If you specifically wanted the numpy scalar type, use `np.float64` here. The aliases was originally deprecated in NumPy 1.20; for more details and guidance see the original release note at: https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations WARNING:torch.distributed.elastic.multiprocessing.api:Sending process 29887 closing signal SIGTERM ERROR:torch.distributed.elastic.multiprocessing.api:failed (exitcode: 1) local_rank: 0 (pid: 29886) of binary: /home/wangbei/anaconda3/envs/Object_mmdetection/bin/python

这个错误看起来像是在使用numpy时出现了问题。根据错误信息,似乎是在`pycocotools/cocoeval.py`文件中的`np.float`出现了问题。这是因为在NumPy 1.20中,`np.float`被弃用了。为了解决这个问题,你需要将代码中的`np.float`替换为`float`或`np.float64`。 你可以在`pycocotools/cocoeval.py`文件中找到`tp_sum = np.cumsum(tps, axis=1).astype(dtype=np.float)`这一行代码,将其中的`np.float`替换为`float`或`np.float64`。如果你不确定应该使用哪个,请根据NumPy版本查看官方文档或参考错误信息中提供的链接。 在修改代码后,重新运行程序,应该就可以解决这个问题了。

相关推荐

最新推荐

recommend-type

QT5开发及实例配套源代码.zip

QT5开发及实例配套[源代码],Qt是诺基亚公司的C++可视化开发平台,本书以Qt 5作为平台,每个章节在简单介绍开发环境的基础上,用一个小实例,介绍Qt 5应用程序开发各个方面,然后系统介绍Qt 5应用程序的开发技术,一般均通过实例介绍和讲解内容。最后通过三个大实例,系统介绍Qt 5综合应用开发。光盘中包含本书教学课件和书中所有实例源代码及其相关文件。通过学习本书,结合实例上机练习,一般能够在比较短的时间内掌握Qt 5应用技术。本书既可作为Qt 5的学习和参考用书,也可作为大学教材或Qt 5培训用书。
recommend-type

grpcio-1.46.3-cp37-cp37m-musllinux_1_1_i686.whl

Python库是一组预先编写的代码模块,旨在帮助开发者实现特定的编程任务,无需从零开始编写代码。这些库可以包括各种功能,如数学运算、文件操作、数据分析和网络编程等。Python社区提供了大量的第三方库,如NumPy、Pandas和Requests,极大地丰富了Python的应用领域,从数据科学到Web开发。Python库的丰富性是Python成为最受欢迎的编程语言之一的关键原因之一。这些库不仅为初学者提供了快速入门的途径,而且为经验丰富的开发者提供了强大的工具,以高效率、高质量地完成复杂任务。例如,Matplotlib和Seaborn库在数据可视化领域内非常受欢迎,它们提供了广泛的工具和技术,可以创建高度定制化的图表和图形,帮助数据科学家和分析师在数据探索和结果展示中更有效地传达信息。
recommend-type

大学生毕业答辨ppt免费模板【不要积分】下载可编辑可用(138).zip

大学生毕业答辨ppt免费模板【不要积分】下载可编辑可用(138).zip
recommend-type

Eclipse的C/C++自动补全插件org.eclipse.cdt.ui-7.3.100.202111091601

Eclipse的C/C++自动补全插件,制作参考:https://blog.csdn.net/kingfox/article/details/104121203?spm=1001.2101.3001.6650.1&utm_medium=distribute.pc_relevant.none-task-blog-2~default~BlogCommendFromBaidu~Rate-1-104121203-blog-117118786.235%5Ev43%5Epc_blog_bottom_relevance_base1&depth_1-utm_source=distribute.pc_relevant.none-task-blog-2~default~BlogCommendFromBaidu~Rate-1-104121203-blog-117118786.235%5Ev43%5Epc_blog_bottom_relevance_base1&utm_relevant_index=2
recommend-type

大学生毕业答辨ppt免费模板【不要积分】下载可编辑可用(137).zip

大学生毕业答辨ppt免费模板【不要积分】下载可编辑可用(137).zip
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

MATLAB柱状图在信号处理中的应用:可视化信号特征和频谱分析

![matlab画柱状图](https://img-blog.csdnimg.cn/3f32348f1c9c4481a6f5931993732f97.png) # 1. MATLAB柱状图概述** MATLAB柱状图是一种图形化工具,用于可视化数据中不同类别或组的分布情况。它通过绘制垂直条形来表示每个类别或组中的数据值。柱状图在信号处理中广泛用于可视化信号特征和进行频谱分析。 柱状图的优点在于其简单易懂,能够直观地展示数据分布。在信号处理中,柱状图可以帮助工程师识别信号中的模式、趋势和异常情况,从而为信号分析和处理提供有价值的见解。 # 2. 柱状图在信号处理中的应用 柱状图在信号处理
recommend-type

用Spring boot和vue写一个登录注册界面

好的,这是一个比较常见的技术问题,我可以为您提供一些参考资料和思路。首先,您可以使用Spring Boot作为后端框架来处理用户认证和注册的逻辑,比如使用Spring Security实现用户登录认证。同时,您还需要设计相应的数据模型和数据库表结构来存储用户信息。在前端方面,您可以使用Vue.js作为框架来构建登录注册页面,使用Axios来发起API请求并和后端进行交互。当然,在实现过程中,还需要考虑一些具体细节,比如数据校验、安全性和用户体验等方面。希望这些信息能够帮助到您。
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。