生成一个基于分数阶微分的image caption模型代码
时间: 2024-05-16 11:13:59 浏览: 156
Python实现基于ClipCap的看图说话Image Caption模型.zip
5星 · 资源好评率100%
以下是基于分数阶微分的image caption模型的代码:
```python
import torch
import torch.nn as nn
import torchvision.models as models
import numpy as np
from scipy import signal
class FractionalDiff(nn.Module):
def __init__(self, order, device):
super(FractionalDiff, self).__init__()
self.order = order
self.device = device
self.conv = nn.Conv1d(1, 1, 3, stride=1, padding=1, bias=False)
filter = self.get_diff_filter()
filter = torch.from_numpy(filter).float().to(self.device)
filter = filter.view((1, 1, filter.shape[0]))
self.conv.weight.data = filter
self.conv.weight.requires_grad = False
def forward(self, x):
x = x.unsqueeze(1)
out = self.conv(x)
out = out.squeeze(1)
return out
def get_diff_filter(self):
n = 201
h = np.zeros(n)
h[0] = 1
a = self.order - 0.5
for i in range(1, n):
h[i] = -h[i-1] * a / i
h = np.concatenate((h, np.zeros(n)))
window = signal.hann(2*n)
h = h * window
H = np.fft.fft(h)
w = np.linspace(-np.pi, np.pi, 2*n)
H = np.exp(1j*w*(self.order-0.5))*H
h = np.real(np.fft.ifft(H))
h = h[:n]
h = h / np.sum(np.abs(h))
return h
class ImageCaption(nn.Module):
def __init__(self, vocab_size, embedding_dim, hidden_dim, num_layers, order, device):
super(ImageCaption, self).__init__()
self.device = device
self.order = order
self.encoder = models.resnet18(pretrained=True)
self.encoder.fc = nn.Linear(512, embedding_dim)
self.embedding = nn.Embedding(vocab_size, embedding_dim)
self.lstm = nn.LSTM(embedding_dim, hidden_dim, num_layers, batch_first=True)
self.fc = nn.Linear(hidden_dim, vocab_size)
self.fdiff = FractionalDiff(order, device)
def forward(self, images, captions):
features = self.encoder(images)
features = features.view(features.size(0), -1)
embeddings = self.embedding(captions)
embeddings = torch.cat((features.unsqueeze(1), embeddings), 1)
embeddings = self.fdiff(embeddings)
hiddens, _ = self.lstm(embeddings)
outputs = self.fc(hiddens)
return outputs
```
该模型使用了一个名为`FractionalDiff`的自定义模块,用于计算分数阶微分。在这个模块中,我们使用了一个可以生成分数阶微分滤波器的函数,该函数返回的滤波器可以应用于一维信号。在`ImageCaption`模型中,我们使用了ResNet-18来提取图像特征,然后使用一个LSTM来生成对应的标题。在输入标题之前,我们将图像特征与一个起始符(SOS)连接起来,然后将它们传递给分数阶微分模块,该模块将对它们进行分数阶微分。最后,我们使用一个全连接层将隐藏状态映射到词汇表的大小。
阅读全文