10. 试述机器学习中L1正则化和L2正则化。
时间: 2023-12-18 19:18:44 浏览: 90
L1与L2正则化对比分析及其应用
在机器学习中,正则化是一种常用的技术,用于控制模型的复杂度并防止过拟合。L1正则化和L2正则化是正则化技术中的两种常见方法。
L1正则化,也称为Lasso正则化,是通过向损失函数中添加权重系数绝对值的和来缩小模型参数。这个正则化惩罚会使得某些参数的值变成精确的零,因此可以用于特征选择。L1正则化的优化问题通常使用L1范数来表示。
L2正则化,也称为Ridge正则化,是通过向损失函数中添加权重系数平方和的二倍来缩小模型参数。与L1正则化不同的是,L2正则化不会将任何参数的值变成精确的零,而是将它们缩小到接近零的值。L2正则化的优化问题通常使用L2范数来表示。
总的来说,L1正则化和L2正则化都是用于控制模型复杂度和防止过拟合的方法,但它们的作用机制和效果略有不同。在实际应用中,需要根据数据集的特征和模型的性质来选择使用哪种正则化方法。
阅读全文