给我一份完整的基于spark的MLlib机器学习库包括数据预处理和探索性数据分析,并生成可视化图表以及建模评估的钻石价格预测分析案例
时间: 2024-03-26 20:40:27 浏览: 145
好的,以下是一份基于Spark的MLlib机器学习库的数据预处理、探索性数据分析和建模评估的钻石价格预测分析案例。
首先,我们需要导入所需的库和数据集:
```python
from pyspark.sql.functions import *
from pyspark.ml.feature import VectorAssembler, StandardScaler
from pyspark.ml.regression import RandomForestRegressor
from pyspark.ml.evaluation import RegressionEvaluator
from pyspark.sql import SparkSession
spark = SparkSession.builder.appName('diamond-price-prediction').getOrCreate()
diamonds = spark.read.csv('diamonds.csv', header=True, inferSchema=True)
```
接下来,我们进行数据预处理。首先,我们删除无关的列,然后将分类变量转换为数值变量:
```python
diamonds = diamonds.drop('id', 'depth', 'table', 'x', 'y', 'z')
cut_dict = {'Fair': 1, 'Good': 2, 'Very Good': 3, 'Premium': 4, 'Ideal': 5}
color_dict = {'J': 1, 'I': 2, 'H': 3, 'G': 4, 'F': 5, 'E': 6, 'D': 7}
clarity_dict = {'I1': 1, 'SI2': 2, 'SI1': 3, 'VS2': 4, 'VS1': 5, 'VVS2': 6, 'VVS1': 7, 'IF': 8}
diamonds = diamonds.replace(cut_dict, subset='cut')
diamonds = diamonds.replace(color_dict, subset='color')
diamonds = diamonds.replace(clarity_dict, subset='clarity')
```
然后我们进行探索性数据分析并生成可视化图表。下面是一个例子:
```python
import seaborn as sns
import matplotlib.pyplot as plt
sns.scatterplot(data=diamonds.toPandas(), x='carat', y='price', hue='cut')
plt.show()
```
接下来,我们将数据集拆分为训练集和测试集,并将特征向量化和标准化:
```python
train_data, test_data = diamonds.randomSplit([0.8, 0.2], seed=123)
assembler = VectorAssembler(inputCols=['carat', 'cut', 'color', 'clarity'], outputCol='features')
train_data = assembler.transform(train_data)
test_data = assembler.transform(test_data)
scaler = StandardScaler(inputCol='features', outputCol='scaledFeatures')
scaler_model = scaler.fit(train_data)
train_data = scaler_model.transform(train_data)
test_data = scaler_model.transform(test_data)
```
最后,我们建立随机森林回归模型并进行评估:
```python
rf = RandomForestRegressor(featuresCol='scaledFeatures', labelCol='price')
rf_model = rf.fit(train_data)
predictions = rf_model.transform(test_data)
evaluator = RegressionEvaluator(labelCol='price', predictionCol='prediction', metricName='rmse')
rmse = evaluator.evaluate(predictions)
print('Root Mean Squared Error (RMSE):', rmse)
```
以上就是一份基于Spark的MLlib机器学习库的数据预处理、探索性数据分析和建模评估的钻石价格预测分析案例。
阅读全文