j_1 = 1/m * (X.transpose() @ (predictions - y))[1:] + (Lambda/m)* theta[1:]中的[1:] 是什么意思
时间: 2024-06-04 18:06:10 浏览: 91
[1:] 表示对 theta 中下标为 1 及其之后的元素进行操作,即去掉 theta 中下标为 0 的元素。这是因为在正则化线性回归中,我们通常不对偏置参数 theta0 进行正则化处理,因为这个参数是用于控制偏移量的,并且一般来说,我们希望它不受正则化的影响。因此,在计算梯度时,我们需要将 theta0 排除在外。在上述公式中,[1:] 就是用于排除 theta0。
相关问题
j_1 = 1/m * (X.transpose() @ (predictions - y))[1:] + (Lambda/m)* theta[1:]
这是一个用于计算梯度下降算法中的正则化项的公式,其中:
- `j_1` 是计算出来的梯度下降的结果,也就是更新后的参数值。
- `m` 是样本数量。
- `X` 是一个矩阵,大小为 m * n,其中第 i 行表示第 i 个样本的特征。
- `predictions` 是一个大小为 m 的向量,其中第 i 个元素表示第 i 个样本的预测值。
- `y` 是一个大小为 m 的向量,其中第 i 个元素表示第 i 个样本的真实值。
- `Lambda` 是正则化参数。
- `theta` 是一个大小为 n 的向量,其中第 i 个元素表示第 i 个特征的权重。
这个公式的含义是:对于每个特征 j,计算出在当前参数值下的梯度,然后加上正则化项的影响。其中,正则化项的影响是将 theta[j] 除以 m,然后乘以正则化参数 Lambda。同时,由于我们不想对 theta[0] 进行正则化,所以在计算时要将 theta[0] 的影响去掉。最终得到的结果就是更新后的参数值。
j_1= 1/m * (X.transpose() @ (predictions - y))[1:]+(Lambda/m)* theta[1:]
这是一个用于线性回归中使用正则化的梯度下降算法的公式,其中:
- X 是输入特征矩阵
- y 是输出标签向量
- predictions 是模型对输入的预测值向量
- m 是样本数量
- theta 是模型参数向量
- Lambda 是正则化参数
这个公式的作用是计算模型参数向量的梯度,以便在梯度下降算法中更新参数向量。其中,对于正则化部分,我们使用了 L2 正则化,将模型参数向量中的第一个元素(即偏差项)除外,对其余元素进行正则化。这是为了防止过拟合。
阅读全文