R语言plot.text(score[, 1:2])这个代码中使用到的plot.text怎么使用
时间: 2024-03-29 17:40:00 浏览: 159
在R语言中,`plot.text()`函数用于在图形中添加文本标签。该函数的语法如下:
```
plot.text(x, y, labels, ...)
```
其中,参数`x`和`y`是文本标签的坐标,`labels`是要添加的文本标签。其他参数用于控制文本标签的外观,例如字体大小、颜色、对齐方式等。
如果要使用`plot.text()`函数,需要先通过`plot()`函数绘制出要添加文本标签的图形。例如,可以使用以下代码绘制一个散点图,并在其中添加文本标签:
```
# 生成数据
x <- rnorm(100)
y <- rnorm(100)
# 绘制散点图
plot(x, y)
# 添加文本标签
labels <- paste("(", round(x, 2), ", ", round(y, 2), ")", sep = "")
plot.text(x, y, labels, cex = 0.8, col = "red")
```
在上述代码中,`plot()`函数用于绘制散点图,`plot.text()`函数用于添加文本标签。`labels`变量用于存储要添加的文本标签,`cex`参数用于控制文本标签的大小,`col`参数用于控制文本标签的颜色。
相关问题
import requests from bs4 import BeautifulSoup import pandas as pd import matplotlib.pyplot as plt from PIL import Image import os # 定义请求头 headers = { 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.3'} # 爬取页面的 URL url = 'https://movie.douban.com/top250' # 发送 GET 请求并获取响应 response = requests.get(url, headers=headers) html = response.text # 解析 HTML soup = BeautifulSoup(html, 'html.parser') # 获取电影列表 movies = [] for item in soup.find_all('div', class_='item'): movie = {} movie['rank'] = item.find('em').text movie['title'] = item.find('span', class_='title').text movie['director'] = item.find('div', class_='bd').p.text.split('\n')[1].strip().split(':')[1] movie['actors'] = item.find('div', class_='bd').p.text.split('\n')[2].strip()[3:] movie['score'] = item.find('span', class_='rating_num').text movie['votes'] = item.find('span', class_='rating_num').next_sibling.next_sibling.text[:-3] movie['cover_url'] = item.find('img')['src'] movies.append(movie) # 存储数据到 CSV 文件 df = pd.DataFrame(movies) df.to_csv('films.csv', index=False) # 下载封面图片并保存 if not os.path.exists('films_pic'): os.mkdir('films_pic') for movie in movies: img_url = movie['cover_url'] img_title = movie['title'] img_path = os.path.join('films_pic', f"{img_title}.jpg") response = requests.get(img_url, headers=headers) with open(img_path, 'wb') as f: f.write(response.content) # 可视化评分和人数 plt.plot(df['rank'], df['score'], label='Score') plt.plot(df['rank'], df['votes'], label='Votes') plt.xlabel('Rank') plt.legend() plt.savefig('score_votes.png') plt.show()
这段代码是一个爬取豆瓣电影 Top250 榜单信息的爬虫,主要实现以下功能:
1. 发送 GET 请求并获取响应,获取电影列表页面的 HTML 代码。
2. 解析 HTML 代码,获取电影信息,包括电影排名、电影名称、导演、演员、评分、评价人数、封面图片 URL。
3. 将电影信息存储到 DataFrame 中,并将 DataFrame 存储为 CSV 文件。
4. 下载电影封面图片,并保存到本地。
5. 可视化电影排名、评分、评价人数的关系,生成图表并保存到本地。
可以看出,这段代码主要使用了 requests 库、BeautifulSoup 库、pandas 库、matplotlib 库、os 库和 PIL 库。其中,requests 库用于发送 HTTP 请求,BeautifulSoup 库用于解析 HTML 代码,pandas 库用于处理数据,matplotlib 库用于绘制图表,os 库用于创建目录,PIL 库用于打开和保存图片。
需要注意的是,这段代码中的请求头 headers 可能不够隐蔽,存在被封禁的风险。建议在使用时根据实际情况调整请求头。此外,爬虫行为可能会违反豆瓣的相关规定,建议在合理使用的前提下进行爬取。
import requests from bs4 import BeautifulSoup import matplotlib.pyplot as plt import pandas as pd PLAYERS_LIMIT = 25 TABLE_CLASS_NAME = "players_table" plt.rcParams['font.sans-serif'] = ['SimHei'] plt.rcParams['axes.unicode_minus'] = False def get_top_players_scores(limit=PLAYERS_LIMIT, table_class_name=TABLE_CLASS_NAME): url = "https://nba.hupu.com/stats/players" response = requests.get(url) soup = BeautifulSoup(response.text, "html.parser") players = [] scores = [] table = soup.find("table", class_=table_class_name) rows = table.find_all("tr") for row in rows[1:limit+1]: cols = row.find_all("td") player = cols[1].text.strip() score_range = cols[4].text.strip() score_parts = score_range.split("-") min_score = float(score_parts[0]) max_score = float(score_parts[1]) score = int((min_score + max_score) / 2) players.append(player) scores.append(score) return players, scores def plot_top_players_scores(players, scores): data = {"Player": players, "Score": scores} df = pd.DataFrame(data) fig, ax = plt.subplots(figsize=(12, 6)) ax.bar(players, scores, color='green', alpha=0.6) ax.set_xlabel('球员', fontsize=12) ax.set_ylabel('得分', fontsize=12) ax.set_title('NBA球员得分', fontsize=14) plt.xticks(rotation=45, ha='right', fontsize=8) ax.spines['top'].set_visible(False) ax.spines['right'].set_visible(False) for i, score in enumerate(scores): ax.text(i, score+0.5, str(score), ha='center', va='bottom') writer = pd.ExcelWriter('plot_top_players_scores.xlsx') df.to_excel(writer, index=False) writer.save() fig.tight_layout() plt.show() if __name__ == "__main__": players, scores = get_top_players_scores() plot_top_players_scores(players, scores)这段代码生成的excel损坏
这可能是因为在代码中将Excel文件的写操作放在了`for`循环中,每次迭代都会打开并写入Excel文件,导致Excel文件损坏。应该将Excel文件的写操作放在循环外面,只在循环结束后执行一次即可。修改后的代码如下:
```python
import requests
from bs4 import BeautifulSoup
import matplotlib.pyplot as plt
import pandas as pd
PLAYERS_LIMIT = 25
TABLE_CLASS_NAME = "players_table"
plt.rcParams['font.sans-serif'] = ['SimHei']
plt.rcParams['axes.unicode_minus'] = False
def get_top_players_scores(limit=PLAYERS_LIMIT, table_class_name=TABLE_CLASS_NAME):
url = "https://nba.hupu.com/stats/players"
response = requests.get(url)
soup = BeautifulSoup(response.text, "html.parser")
players = []
scores = []
table = soup.find("table", class_=table_class_name)
rows = table.find_all("tr")
for row in rows[1:limit+1]:
cols = row.find_all("td")
player = cols[1].text.strip()
score_range = cols[4].text.strip()
score_parts = score_range.split("-")
min_score = float(score_parts[0])
max_score = float(score_parts[1])
score = int((min_score + max_score) / 2)
players.append(player)
scores.append(score)
return players, scores
def plot_top_players_scores(players, scores):
data = {"Player": players, "Score": scores}
df = pd.DataFrame(data)
fig, ax = plt.subplots(figsize=(12, 6))
ax.bar(players, scores, color='green', alpha=0.6)
ax.set_xlabel('球员', fontsize=12)
ax.set_ylabel('得分', fontsize=12)
ax.set_title('NBA球员得分', fontsize=14)
plt.xticks(rotation=45, ha='right', fontsize=8)
ax.spines['top'].set_visible(False)
ax.spines['right'].set_visible(False)
for i, score in enumerate(scores):
ax.text(i, score+0.5, str(score), ha='center', va='bottom')
writer = pd.ExcelWriter('plot_top_players_scores.xlsx')
df.to_excel(writer, index=False)
writer.save()
fig.tight_layout()
plt.show()
if __name__ == "__main__":
players, scores = get_top_players_scores()
plot_top_players_scores(players, scores)
```
这样修改后,Excel文件的写操作只会在循环结束后执行一次,不会出现损坏的问题。
阅读全文
相关推荐

















