python多元线性回归预测光伏发电代码

时间: 2023-09-01 07:12:40 浏览: 50
以下是一个简单的Python多元线性回归预测光伏发电的代码示例: ```python import pandas as pd from sklearn.linear_model import LinearRegression from sklearn.model_selection import train_test_split # 读取数据 data = pd.read_csv('solar_data.csv') # 划分自变量和因变量 X = data[['Temperature', 'WindSpeed', 'Humidity']] y = data['Power'] # 划分训练集和测试集 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0) # 线性回归模型 regressor = LinearRegression() regressor.fit(X_train, y_train) # 预测 y_pred = regressor.predict(X_test) # 输出预测结果 print(y_pred) ``` 注意,这个示例假设你已经有了一个名为`solar_data.csv`的数据文件,其中包含了温度、风速、湿度和光伏发电功率的数据。你需要根据实际情况修改代码中的文件名和自变量和因变量的列名。
相关问题

python多元线性回归预测

对于Python中的多元线性回归预测,你可以使用scikit-learn库来实现。下面是一个简单的示例代码,展示了如何使用多元线性回归模型进行预测: ```python from sklearn.linear_model import LinearRegression # 定义特征矩阵 X 和目标变量 y X = [[1, 3], [2, 4], [3, 6], [4, 8]] # 特征矩阵 X,每行代表一个样本的特征 y = [6, 8, 12, 16] # 目标变量 y,对应样本的输出值 # 创建多元线性回归模型对象 model = LinearRegression() # 使用特征矩阵 X 和目标变量 y 训练模型 model.fit(X, y) # 进行预测 new_data = [[5, 10], [6, 12]] # 新的特征矩阵,用于预测 predictions = model.predict(new_data) print(predictions) ``` 在上述代码中,特征矩阵X是一个二维数组,每一行代表一个样本的特征,每一列代表一个特征。目标变量y是一个一维数组,代表每个样本对应的输出值。通过调用LinearRegression()创建了一个多元线性回归模型对象,并使用fit()函数进行训练。最后,使用predict()函数对新的特征矩阵进行预测,并打印出预测结果。

python多元线性回归预测波士顿房价

好的,下面是Python实现多元线性回归预测波士顿房价的步骤: 1. 导入所需的库: ``` python import numpy as np import pandas as pd import matplotlib.pyplot as plt from sklearn.linear_model import LinearRegression from sklearn.datasets import load_boston from sklearn.model_selection import train_test_split from sklearn.metrics import mean_squared_error ``` 2. 加载波士顿房价数据集: ``` python boston = load_boston() X = pd.DataFrame(boston.data, columns=boston.feature_names) y = pd.DataFrame(boston.target, columns=['MEDV']) ``` 3. 数据集划分为训练集和测试集: ``` python X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) ``` 4. 创建线性回归模型并进行训练: ``` python reg = LinearRegression() reg.fit(X_train, y_train) ``` 5. 对测试集进行预测并计算均方误差: ``` python y_pred = reg.predict(X_test) mse = mean_squared_error(y_test, y_pred) print('均方误差:', mse) ``` 6. 可以输出预测结果和实际结果进行比较: ``` python result = pd.DataFrame({'Actual': y_test['MEDV'], 'Predicted': y_pred.flatten()}) print(result) ``` 7. 最后,我们可以画出实际房价和预测房价的散点图: ``` python plt.scatter(y_test, y_pred) plt.xlabel('实际房价') plt.ylabel('预测房价') plt.show() ``` 以上就是Python实现多元线性回归预测波士顿房价的步骤。

相关推荐

最新推荐

关于多元线性回归分析——Python&SPSS

原始数据在这里 1.观察数据 首先,用Pandas打开数据,并进行观察。 import numpy import pandas as pd import matplotlib.pyplot as plt ...我们的问题是得到一个线性的关系,对应PE是样本输出,而AT/V/

Python实现多元线性回归方程梯度下降法与求函数极值

梯度下降法 梯度下降法的基本思想可以类比为一个下山的过程。 假设这样一个场景:一个人被困在山上,需要从山上下来(找到山的最低点,也就是山谷)。但此时山上的浓雾很大,导致可视度很低;因此,下山的路径就无法...

基于线性回归的广告投入销售额预测

目录基于线性回归的广告投入销售额预测前言基于线性回归的广告投入销量预测导入相关的库读取并查看数据基本情况查看数据维度查看数据基本统计情况数据可视化经典线性模型建立划分自变量与因变量划分训练集和测试集...

8种用Python实现线性回归的方法对比详解

主要介绍了8种用Python实现线性回归的方法对比详解,说到如何用Python执行线性回归,大部分人会立刻想到用sklearn的linear_model,但事实是,Python至少有8种执行线性回归的方法,sklearn并不是最高效的,需要的朋友...

Python编程实现线性回归和批量梯度下降法代码实例

主要介绍了Python编程实现线性回归和批量梯度下降法代码实例,具有一定借鉴价值,需要的朋友可以参考下

大数据平台架构与原型实现 数据中台建设实战.pptx

《大数据平台架构与原型实现:数据中台建设实战》是一本针对大数据技术发展趋势的实用指导手册。通过对该书的内容摘要进行梳理,可以得知,本书主要围绕大数据平台架构、原型实现和数据中台建设展开,旨在帮助读者更好地了解和掌握大数据平台架构和原型实现的方法,并通过数据中台建设实战获取实践经验。本书深入浅出地介绍了大数据平台架构的基本原理和设计思路,辅以实际案例和实践应用,帮助读者深入理解大数据技术的核心概念和实践技能。 首先,本书详细介绍了大数据平台架构的基础知识和技术原理。通过对分布式系统、云计算和大数据技术的介绍,帮助读者建立对大数据平台架构的整体认识。在此基础上,本书结合实际案例,详细阐述了大数据平台架构的设计和实现过程,使读者能够深入了解大数据平台的构建流程和关键环节。 其次,本书重点讲解了原型实现的关键技术和方法。通过介绍原型设计的基本原则,读者可以了解如何在实践中快速验证大数据平台架构的可行性和有效性。本书的案例介绍和实践指导,使读者可以通过模拟实际场景,实现原型的快速迭代和优化,为企业的大数据应用提供可靠的支撑和保障。 最后,本书还重点介绍了数据中台建设的重要性和实战经验。数据中台作为企业实现数据驱动业务增长的关键,其建设和运营需要有系统的规划和实际经验。通过本书的案例介绍和技术实战,读者可以了解数据中台建设的关键环节和方法,帮助企业快速搭建和运营数据中台,实现数据的统一管理和应用,提升业务运营效率和效果。 综上所述,《大数据平台架构与原型实现:数据中台建设实战》这本书通过清晰的思维导图、精彩的内容摘要和详细的案例介绍,为读者提供了一本全面系统的大数据平台架构实战指南。通过阅读本书,读者可以系统了解大数据平台的搭建原理和方法,掌握原型实现的关键技术和实践经验,以及深入理解数据中台建设的重要性和实战经验。本书将成为大数据领域从业者、研究人员和企业决策者的宝贵参考,帮助他们更好地利用大数据技术,推动企业业务的发展和创新。

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire

如何利用 DFS 算法解决棋盘类游戏问题

![如何利用 DFS 算法解决棋盘类游戏问题](https://img-blog.csdnimg.cn/20210409210511923.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L2tvY2h1bmsxdA==,size_16,color_FFFFFF,t_70) # 1. DFS 算法简介与原理 深度优先搜索算法(Depth First Search,DFS)是一种常用的图遍历算法,其主要思想是从起始节点出发,尽可能深地搜索每

某视频中展现出了一个中学为丰富课间活动,组织了若干个学生在操场进行数学变形游戏。即固定若干个同学,先排成一列,然后依次变为“2”,“3”,“4”,....,“10”等。 1、建立数学模型,给出编排过程中的最优路径。以15个学生为例,计算出编排路径,并列出相应的人员坐标。

为了解决这个问题,我们可以使用图论中的最短路径算法来找到最优路径。我们可以将每个学生看作图中的一个节点,节点之间的距离表示他们在排列中的位置差异。以下是一个示例的数学模型和求解过程: 1. 建立数学模型: - 定义图G=(V, E),其中V为学生节点的集合,E为边的集合。 - 对于每个学生节点v∈V,我们需要将其与其他学生节点进行连接,形成边。边的权重可以定义为两个学生节点在排列中的位置差异的绝对值。 2. 计算最优路径: - 使用最短路径算法,例如Dijkstra算法或Floyd-Warshall算法,来计算从起始节点到目标节点的最短路径。 - 在本例中,起始节点

医药行业之消化介入专题报告:国内市场方兴未艾,国产设备+耗材崛起-0722-西南证券-36页.pdf

医药行业的消化介入领域备受关注,国内市场呈现方兴未艾的趋势。根据西南证券研究发展中心2019年7月发布的报告,国产设备和耗材正在崛起,对消化内窥镜这一主要类型的设备需求不断增长。消化内窥镜在消化道早癌诊断和治疗中发挥着重要作用,尤其是在中国这样消化系统疾病高发的国家。据统计,2015年中国新发癌症患者达到429.2万例,其中食管癌、胃癌、结直肠癌占比分别为51%、31%和24%,位列全球首位。然而,早期癌症的筛查和检测在中国仍然存在空白,胃镜检查率仅为日本的1/5,肠镜检查率更是日本的1/7,美国的1/9,导致患者的生存率远低于发达国家。以日本为例,食管癌早期患者的五年生存率高达77.9%,而晚期仅为11.5%。因此,国内市场对于消化道早癌诊断和治疗设备的需求量巨大,国产设备和耗材有望崛起并占据市场份额。 消化介入领域的发展受益于医疗技术的不断进步和国家政策的支持。据陈铁林等分析师指出,消化内窥镜的应用范围将得到进一步拓展,其在早癌筛查、溃疡检测和其他消化系统疾病诊疗方面的应用将越来越广泛。此外,国产设备和耗材的质量和技术也在不断提升,使得国内厂商能够与国际巨头竞争,甚至在某些领域取得领先地位。消化内窥镜市场的崛起,将不仅带动整个医疗器械行业的发展,也为国内消化道疾病患者提供更好的诊疗服务和生存机会。 除了市场需求和技术进步,消化介入领域还受到了政策和监管环境的影响。政府对于医疗器械行业实施了一系列激励政策,包括减税、资金支持和技术培训等措施,为国内企业提供了良好的发展环境。与此同时,监管部门也对医疗器械的质量和安全进行了严格监管,加强了对产品注册和上市的审核流程,保障了消费者的利益和健康。消化介入领域的健康发展不仅需要市场需求和技术支持,还需要政策的支持和监管的引导,以确保医疗器械行业持续稳定的发展。 总的来说,医药行业的消化介入领域在国内市场呈现出蓬勃发展的趋势。国产设备和耗材正在崛起,消化内窥镜等设备在消化道早癌诊断和治疗中发挥着重要作用。市场需求、技术进步、政策支持和监管环境共同推动了这一领域的健康发展,也为国内医疗器械行业带来了新的机遇和挑战。随着消化介入领域的不断拓展和完善,相信国内企业将在未来取得更大的发展,为消化系统疾病患者提供更好的诊疗服务,为医疗器械行业的发展贡献更多的力量。