transformer 序列分类
时间: 2023-10-01 13:12:35 浏览: 149
Transformer 模型可以用于序列分类任务,其中输入是一个序列,输出是一个标签或分类。下面是一个简单的 Transformer 序列分类模型的示例代码:
```
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.nn import TransformerEncoder, TransformerEncoderLayer
class TransformerClassifier(nn.Module):
def __init__(self, input_dim, output_dim, n_layers, hidden_dim, n_heads, dropout):
super(TransformerClassifier, self).__init__()
self.model_type = 'Transformer'
self.src_mask = None
self.pos_encoder = PositionalEncoding(hidden_dim, dropout)
encoder_layers = TransformerEncoderLayer(hidden_dim, n_heads, hidden_dim, dropout)
self.transformer_encoder = TransformerEncoder(encoder_layers, n_layers)
self.encoder = nn.Linear(input_dim, hidden_dim)
self.decoder = nn.Linear(hidden_dim, output_dim)
def forward(self, src):
if self.src_mask is None or self.src_mask.size(0) != len(src):
mask = self._generate_square_subsequent_mask(len(src)).to(src.device)
self.src_mask = mask
src = self.encoder(src)
src = self.pos_encoder(src)
output = self.transformer_encoder(src, self.src_mask)
output = self.decoder(output.mean(dim=0))
return F.log_softmax(output, dim=1)
def _generate_square_subsequent_mask(self, sz):
mask = (torch.triu(torch.ones(sz, sz)) == 1).transpose(0, 1)
mask = mask.float().masked_fill(mask == 0, float('-inf')).masked_fill(mask == 1, float(0.0))
return mask.to(src.device)
```
该模型将输入序列传递给一个线性编码器,然后通过位置编码器进行编码。接下来,通过 TransformerEncoderLayer 和 TransformerEncoder 进行多层编码。最后,通过线性解码器将输出映射到标签空间,并通过 log_softmax 函数进行归一化。
阅读全文