最小二乘支持向量机算法
时间: 2024-08-12 15:06:27 浏览: 108
最小二乘支持向量机算法及工具
3星 · 编辑精心推荐
最小二乘支持向量机(Least Squares Support Vector Machine, LSSVM)是一种基于支持向量机(SVM)的优化方法,它主要用于回归分析而非传统的分类问题。与标准的硬间隔支持向量机不同,LSSVM采用了一种软间隔策略,允许部分样本落在决策边界附近,通过最小化误差平方和来找到最优解。这种方法的主要优势在于处理大型数据集时效率较高,因为它不需要求解凸二次规划的拉格朗日乘数问题,而是转化为更为简单的线性系统。
LSSVM的核心思想是寻找使得预测误差平方和最小的支持向量。在训练过程中,模型会找出那些距离超平面最近的数据点(即支持向量),并通过调整权重参数来最小化残差。这种模型能够很好地拟合数据,同时避免了过拟合的风险。
阅读全文