resnet18代码复现pytorch
时间: 2023-07-23 14:03:02 浏览: 247
可以使用PyTorch自带的torchvision.models模块中的resnet18模型进行复现。
示例代码:
```
import torch
from torchvision import models
resnet18 = models.resnet18(pretrained=True)
# 打印模型结构
print(resnet18)
```
如果需要训练resnet18,可以使用如下代码:
```
import torch.optim as optim
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(resnet18.parameters(), lr=0.001, momentum=0.9)
# 训练过程
for epoch in range(2): # loop over the dataset multiple times
running_loss = 0.0
for i, data in enumerate(trainloader, 0):
# get the inputs; data is a list of [inputs, labels]
inputs, labels = data
# zero the parameter gradients
optimizer.zero_grad()
# forward + backward + optimize
outputs = resnet18(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
# print statistics
running_loss += loss.item()
print('Epoch %d loss: %.3f' %(epoch + 1, running_loss / (i+1)))
print('Finished Training')
```
注意: 上面代码块中的trainloader是训练数据的读取方式。
阅读全文