数学建模 模拟退火算法Python代码
时间: 2024-05-04 07:14:33 浏览: 179
模拟退火算法(python源码)
5星 · 资源好评率100%
数学建模是将实际问题抽象为数学模型,并通过数学方法进行求解和分析的过程。它在实际问题的解决中起到了重要的作用。而模拟退火算法是一种全局优化算法,常用于求解复杂的优化问题。下面是一个简单的模拟退火算法的Python代码示例:
```python
import random
import math
def simulated_annealing(cost_func, initial_solution, initial_temperature, cooling_rate, max_iterations):
current_solution = initial_solution
best_solution = current_solution
current_temperature = initial_temperature
for i in range(max_iterations):
new_solution = generate_neighbor(current_solution)
current_cost = cost_func(current_solution)
new_cost = cost_func(new_solution)
if new_cost < current_cost:
current_solution = new_solution
if new_cost < cost_func(best_solution):
best_solution = new_solution
else:
probability = math.exp((current_cost - new_cost) / current_temperature)
if random.random() < probability:
current_solution = new_solution
current_temperature *= cooling_rate
return best_solution
def generate_neighbor(solution):
# 生成邻居解的方法,根据具体问题进行定义
pass
def cost_func(solution):
# 计算解的成本函数,根据具体问题进行定义
pass
# 使用示例
initial_solution = [1, 2, 3, 4, 5]
initial_temperature = 100
cooling_rate = 0.95
max_iterations = 1000
best_solution = simulated_annealing(cost_func, initial_solution, initial_temperature, cooling_rate, max_iterations)
print("Best solution:", best_solution)
```
请注意,上述代码中的`generate_neighbor`函数和`cost_func`函数需要根据具体问题进行定义。`generate_neighbor`函数用于生成邻居解,而`cost_func`函数用于计算解的成本函数。在实际应用中,你需要根据具体的优化问题来编写这两个函数。
阅读全文