pd.read.csv(encoding) default
时间: 2024-04-11 13:24:25 浏览: 172
pandas库中的`pd.read_csv()`函数是用于读取CSV文件的函数。它有一个名为`encoding`的参数,用于指定文件的编码格式。如果不指定`encoding`参数,默认情况下会使用UTF-8编码进行读取。
CSV文件是一种以逗号分隔值的文件格式,常用于存储表格数据。`pd.read_csv()`函数可以将CSV文件读取为一个DataFrame对象,方便进行数据处理和分析。
以下是`pd.read_csv()`函数的默认行为:
- 默认情况下,它会假设CSV文件的编码格式为UTF-8。
- 如果CSV文件的编码格式与UTF-8不同,可以使用`encoding`参数来指定正确的编码格式。
- 如果不需要指定编码格式,可以直接调用`pd.read_csv()`函数,它会自动使用UTF-8编码进行读取。
相关问题
pd.read_csv
pd.read_csv() is a function in the pandas library of Python that reads a CSV (Comma Separated Values) file and returns a pandas DataFrame. The function takes a file path as an argument and can also take several optional parameters like delimiter, header, encoding, etc.
Syntax:
```python
pd.read_csv(filepath_or_buffer, sep=',', delimiter=None, header='infer', names=None, index_col=None, usecols=None, dtype=None, skiprows=None, nrows=None, skip_blank_lines=True, na_values=None, keep_default_na=True, verbose=False, skipinitialspace=False, converters=None, encoding=None, squeeze=False)
```
Some of the commonly used parameters of pd.read_csv() are:
- filepath_or_buffer: the path to the CSV file or a URL.
- sep: the delimiter used in the CSV file.
- header: the row number(s) to use as the column names, default is 'infer'.
- names: a list of column names to use instead of the names in the CSV file.
- index_col: the column to use as the index of the DataFrame.
- dtype: a dictionary of data types for the columns in the DataFrame.
- skiprows: the number of rows to skip from the beginning of the file.
- na_values: a list of values to be treated as missing values.
- encoding: the encoding of the CSV file.
pd.read_csv用法
pd.read_csv是pandas库中的一个函数,用于将csv文件读入数据框架(DataFrame)。可以通过传递文件路径、网页上的文件或文件对象来读取csv文件。例如,可以使用以下代码读取csv文件:
1. 通过文件路径读取:
```
import pandas as pd
pd.read_csv('data.csv')
```
2. 通过网页上的文件读取:
```
import pandas as pd
pd.read_csv("http://localhost/data.csv")
```
3. 通过文件对象读取:
```
import pandas as pd
f = open(r"E:\VSCODE\2_numpy_pandas\pandas\Game_Data.csv", encoding="gbk")
pd.read_csv(f)
```
在读取csv文件时,还可以使用sep参数指定分隔符。默认情况下,分隔符为逗号。例如,可以使用以下代码指定分隔符为逗号、冒号或分号:
```
import pandas as pd
pd.read_csv('data.csv', sep=",|:|;", engine="python")
```
综上所述,pd.read_csv函数是pandas库中用于读取csv文件的函数,可以通过文件路径、网页上的文件或文件对象来读取,并可通过sep参数指定分隔符。<span class="em">1</span><span class="em">2</span><span class="em">3</span>
#### 引用[.reference_title]
- *1* *3* [python pandas.read_csv()函数详解](https://blog.csdn.net/weixin_43690010/article/details/115178050)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"]
- *2* [【Pandas总结】第二节 Pandas 的数据读取_pd.read_csv()的使用详解(非常全面,推荐收藏)](https://blog.csdn.net/weixin_47139649/article/details/126744842)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"]
[ .reference_list ]
阅读全文