用最好理解的方式给我一个matlab遗传算法的代码示例,条件要多一些的
时间: 2024-04-17 12:28:15 浏览: 39
当然,我可以给你一个简单的 MATLAB 遗传算法代码示例,其中包含多个条件。以下是一个基于遗传算法求解函数最小值的示例代码:
```matlab
% 遗传算法参数
popSize = 50; % 种群大小
numGenes = 10; % 染色体长度
numIterations = 100; % 迭代次数
mutationRate = 0.02; % 变异率
% 初始化种群
population = randi([0, 1], popSize, numGenes);
% 迭代
for iter = 1:numIterations
% 计算适应度函数值
fitness = calculateFitness(population);
% 选择操作:轮盘赌选择
selectedIndices = rouletteWheelSelection(fitness);
selectedPopulation = population(selectedIndices, :);
% 染色体交叉
offspringPopulation = crossover(selectedPopulation);
% 变异操作
mutatedPopulation = mutation(offspringPopulation, mutationRate);
% 更新种群
population = mutatedPopulation;
end
% 计算最优解
fitness = calculateFitness(population);
[~, bestIndex] = min(fitness);
bestSolution = population(bestIndex, :);
% 输出结果
disp('最优解:');
disp(bestSolution);
% 定义适应度函数(示例函数为 Rosenbrock 函数)
function fitness = calculateFitness(population)
[numIndividuals, ~] = size(population);
fitness = zeros(numIndividuals, 1);
for i = 1:numIndividuals
x = bi2de(population(i, :));
fitness(i) = (1 - x(1))^2 + 100 * (x(2) - x(1)^2)^2;***
阅读全文