CART决策树Matlab代码
时间: 2023-09-01 20:11:50 浏览: 183
以下是使用MATLAB编写的CART决策树代码:
```matlab
% 数据预处理
load ionosphere;
length = size(X, 1);
rng(1); % 可复现
indices = crossvalind('Kfold', length, 5); % 用k折分类法将样本随机分为5部分
% 四份用来训练,一份进行测试
i = 1;
test = (indices == i);
train = ~test;
X_train = X(train, :);
Y_train = Y(train, :);
X_test = X(test, :);
Y_test = Y(test, :);
% 构建CART算法分类树
tree = fitctree(X_train, Y_train);
view(tree, 'Mode', 'graph'); % 生成树图
% 求取规则数量
rules_num = (tree.IsBranchNode == 0);
rules_num = sum(rules_num);
% 使用测试样本进行验证
Cart_result = predict(tree, X_test);
Cart_result = cell2mat(Cart_result);
Y_test = cell2mat(Y_test);
Cart_result = (Cart_result == Y_test);
% 统计准确率
Cart_length = size(Cart_result, 1);
Cart_rate = (sum(Cart_result)) / Cart_length;
disp(\['规则数:' num2str(rules_num)\]);
disp(\['测试样本识别准确率:' num2str(Cart_rate)\]);
```
这段代码首先加载了ionosphere数据集,并将数据集分为训练集和测试集。然后使用CART算法构建了一个分类树,并生成了树图。接着统计了分类树中的规则数量。最后使用测试样本对分类树进行验证,并计算了测试样本的识别准确率。
#### 引用[.reference_title]
- *1* [使用matlab实现决策树cart算法(基于fitctree函数)](https://blog.csdn.net/u010356524/article/details/79848624)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control_2,239^v3^insert_chatgpt"}} ] [.reference_item]
[ .reference_list ]
阅读全文