tokenizer.encode_plus和直接使用tokenizer有什么区别
时间: 2023-11-20 15:07:20 浏览: 211
PyPI 官网下载 | pytorch_pretrained_bert-0.3.0.tar.gz
5星 · 资源好评率100%
`tokenizer.encode_plus`和直接使用`tokenizer`的区别在于它们的功能和输出结果。
1. `tokenizer.encode_plus`: 这是一个方便的函数,它将文本作为输入,并返回编码后的结果。使用`encode_plus`函数,你可以指定很多参数,如`add_special_tokens`(是否添加特殊标记)、`truncation`(是否截断文本)、`padding`(是否填充文本)、`max_length`(最大输入长度)、`return_tensors`(返回的张量类型)等。`encode_plus`函数返回一个字典,其中包含编码后的输入ids、注意力掩码、标记类型ids等。
2. 直接使用`tokenizer`: 使用tokenizer的`encode`方法可以将文本编码为输入ids,但它不提供其他参数选项。直接使用`tokenizer`编码的输出结果是一个列表,其中包含编码后的输入ids。
区别在于,`encode_plus`函数相比于直接使用`tokenizer`提供了更多的灵活性和功能。它允许你一次性完成编码、截断、填充等操作,并返回一个包含多个编码相关张量的字典。这样,你可以更轻松地处理不同长度的输入文本,并且可以直接将结果传递给模型进行处理。
总的来说,如果你需要更多的编码选项和输出结果,推荐使用`encode_plus`函数。如果你只需要简单地将文本编码为输入ids,那么直接使用`tokenizer`的`encode`方法即可。
阅读全文