sklearn实现mlp的回归
时间: 2024-10-06 22:05:51 浏览: 62
多元线性回归问题.zip
在Scikit-learn库中,可以使用`MLPRegressor`模型来实现多层感知机(Multilayer Perceptron, MLP)的回归任务。MLP是一种人工神经网络,常用于处理非线性和复杂的数据模式。以下是使用`MLPRegressor`的基本步骤:
1. **导入必要的模块**:
```python
from sklearn.neural_network import MLPRegressor
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.datasets import load_iris
```
2. **加载数据集(这里举例用iris数据集,实际应用需替换为相应数据)**:
```python
iris = load_iris()
X = iris.data
y = iris.target
```
3. **数据预处理**:
- 划分训练集和测试集:
```python
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
```
- 标准化数据,确保所有特征在同一尺度上:
```python
scaler = StandardScaler()
X_train = scaler.fit_transform(X_train)
X_test = scaler.transform(X_test)
```
4. **创建并训练MLPRegressor模型**:
```python
mlp = MLPRegressor(hidden_layer_sizes=(100,), activation='relu', solver='adam', alpha=0.0001, max_iter=500)
mlp.fit(X_train, y_train)
```
这里设置了隐藏层大小为100,激活函数为ReLU,优化器为Adam,正则化参数alpha为0.0001,迭代次数为500次。
5. **评估模型性能**:
```python
predictions = mlp.predict(X_test)
from sklearn.metrics import mean_squared_error, r2_score
mse = mean_squared_error(y_test, predictions)
r2 = r2_score(y_test, predictions)
print("MSE:", mse)
print("R² Score:", r2)
```
阅读全文