MLP SKLEARN实现
时间: 2024-10-29 18:06:51 浏览: 19
MLP (Multi-Layer Perceptron) 或全称为多层感知机,在Scikit-learn库中是一个用于实施人工神经网络的模块。它是一种前馈神经网络,常用于分类和回归任务。Scikit-learn中的MLPClassifier和MLPRegressor分别对应分类和回归问题。
以下是使用Scikit-learn实现基本的MLP模型步骤:
1. 导入所需库:
```python
from sklearn.neural_network import MLPClassifier for分类任务
from sklearn.neural_network import MLPRegressor for回归任务
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
```
2. 准备数据集(假设X是特征,y是目标变量):
```python
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
```
3. 数据预处理(通常需要归一化或标准化数据):
```python
scaler = StandardScaler()
X_train = scaler.fit_transform(X_train)
X_test = scaler.transform(X_test)
```
4. 创建并训练模型:
```python
mlp_classifier = MLPClassifier(hidden_layer_sizes=(100,), activation='relu', solver='adam', max_iter=500)
mlp_classifier.fit(X_train, y_train)
# 或者对于回归任务:
mlp_regressor = MLPRegressor(hidden_layer_sizes=(100,))
mlp_regressor.fit(X_train, y_train)
```
这里`hidden_layer_sizes`指定了隐藏层的数量和大小,`activation`是激活函数,`solver`是优化算法,`max_iter`是最大迭代次数。
5. 预测:
```python
predictions = mlp_classifier.predict(X_test) # 分类预测
or
predictions = mlp_regressor.predict(X_test)
阅读全文