graph bert
时间: 2023-10-24 20:05:36 浏览: 287
Graph-Bert是一种用于学习图表示的模型,它将Bert模型中的attention机制拓展到图结构数据上。与传统的图神经网络(GCN)不同,Graph-Bert将原始图采样为多个子图,并且只利用attention机制在子图上进行表征学习,而不考虑子图中的边信息。这种方法可以解决传统GNN具有的性能问题和效率问题。Graph-Bert的优点在于只需要attention机制,而不需要像GCN一样进行卷积操作,因此可以更好地处理大规模图数据。同时,Graph-Bert还可以处理不同类型的节点和边,因此可以应用于更广泛的图数据。
相关问题
Molecular-graph-BERT 代码实现
Molecular-graph-BERT 是一种基于图神经网络的化学分子表示方法,可用于分子性质预测、分子设计等应用。以下是 Molecular-graph-BERT 的代码实现。
1. 安装依赖
```python
!pip install torch
!pip install dgl
!pip install rdkit
```
2. 数据预处理
```python
import dgl
from rdkit import Chem
from dgl.data.utils import load_graphs, save_graphs
from dgl.data.chem.utils import smiles_to_bigraph, CanonicalAtomFeaturizer
# 将 SMILES 序列转换为 DGLGraph
def graph_from_smiles(smiles):
mol = Chem.MolFromSmiles(smiles)
return smiles_to_bigraph(smiles, atom_featurizer=CanonicalAtomFeaturizer())
# 读取数据,并将 SMILES 序列转换为 DGLGraph
data = []
with open('data.txt', 'r') as f:
for line in f:
smiles, label = line.strip().split('\t')
g = graph_from_smiles(smiles)
label = int(label)
data.append((g, label))
# 将 DGLGraph 序列化并保存为二进制文件
save_graphs('data.bin', data)
```
3. 定义模型
```python
import torch
import torch.nn as nn
import dgl.function as fn
# 定义 GraphConvLayer
class GraphConvLayer(nn.Module):
def __init__(self, in_feats, out_feats):
super(GraphConvLayer, self).__init__()
self.linear = nn.Linear(in_feats, out_feats)
self.activation = nn.ReLU()
def forward(self, g, features):
with g.local_scope():
g.ndata['h'] = features
g.update_all(fn.copy_u('h', 'm'), fn.sum('m', 'neigh'))
h_neigh = g.ndata['neigh']
h = self.linear(features + h_neigh)
h = self.activation(h)
return h
# 定义 MolecularGraphBERT 模型
class MolecularGraphBERT(nn.Module):
def __init__(self, hidden_size, num_layers):
super(MolecularGraphBERT, self).__init__()
self.embed = nn.Embedding(100, hidden_size)
self.layers = nn.ModuleList([GraphConvLayer(hidden_size, hidden_size) for _ in range(num_layers)])
self.pool = dgl.nn.pytorch.glob.max_pool
def forward(self, g):
h = self.embed(g.ndata['feat'])
for layer in self.layers:
h = layer(g, h)
g.ndata['h'] = h
hg = self.pool(g, g.ndata['h'])
return hg
```
4. 训练模型
```python
from torch.utils.data import DataLoader
from dgl.data.utils import load_graphs
# 加载数据
data, _ = load_graphs('data.bin')
labels = torch.tensor([d[1] for d in data])
# 划分训练集和测试集
train_data, test_data = data[:80], data[80:]
train_labels, test_labels = labels[:80], labels[80:]
# 定义训练参数
lr = 0.01
num_epochs = 50
hidden_size = 128
num_layers = 3
# 定义模型和优化器
model = MolecularGraphBERT(hidden_size, num_layers)
optimizer = torch.optim.Adam(model.parameters(), lr=lr)
# 训练模型
for epoch in range(num_epochs):
model.train()
for i, (g, label) in enumerate(train_data):
pred = model(g)
loss = nn.functional.binary_cross_entropy_with_logits(pred, label.unsqueeze(0).float())
optimizer.zero_grad()
loss.backward()
optimizer.step()
model.eval()
with torch.no_grad():
train_acc = 0
for g, label in train_data:
pred = model(g)
train_acc += ((pred > 0).long() == label).sum().item()
train_acc /= len(train_data)
test_acc = 0
for g, label in test_data:
pred = model(g)
test_acc += ((pred > 0).long() == label).sum().item()
test_acc /= len(test_data)
print('Epoch {:d} | Train Acc {:.4f} | Test Acc {:.4f}'.format(epoch, train_acc, test_acc))
```
以上就是 Molecular-graph-BERT 的代码实现。需要注意的是,由于 Molecular-graph-BERT 是基于图神经网络的方法,需要使用 DGL 库来构建和操作图数据,因此需要先安装 DGL 库。
e:bert_vec:[graph:opt:152]:module 'tensorflow._api.v2.compat.v1' has no attr
这个错误通常是由于使用了过时的tensorflow代码导致的。在较新的tensorflow版本中,一些接口和模块可能发生了变化,导致之前的代码无法正常运行。要解决这个问题,可以尝试升级tensorflow的版本,使用兼容性更好的接口和模块。另外,也可以检查代码中是否有对过时接口的直接引用,可以尝试更新相应的代码以适配新版本的tensorflow。另外,还可以通过查看tensorflow的官方文档或者在社区中寻求帮助,获取关于特定模块或接口变化的信息,以便更好地调整代码。最后,也可以考虑使用一些较新的模型或者工具,以避免对过时接口的依赖,从而减少类似问题的发生。总之,解决这个问题需要对代码和依赖进行全面的审查和更新,以确保能够正常运行在较新版本的tensorflow环境中。
阅读全文