帮我写个模糊大津法的C语言程序
时间: 2024-10-23 07:00:36 浏览: 14
大津法程序
大津法(Otsu's method),也称为二值化方法,是一种用于图像二值化的算法。以下是一个简单的C语言程序示例,该程序实现了基本的大津分割过程:
```c
#include <stdio.h>
#include <stdlib.h>
// 定义图像像素类型
typedef struct {
int gray;
} Pixel;
// 计算图像的整体灰度均值
double mean(const Pixel* pixels, int width, int height) {
double sum = 0;
for (int i = 0; i < width * height; ++i) {
sum += pixels[i].gray;
}
return sum / (width * height);
}
// 计算加权累积分布函数
double cumulative_distribution(int gray, const Pixel* pixels, int width, int height) {
double total_pixels = width * height;
int count = 0;
for (int i = 0; i < total_pixels; ++i) {
if (pixels[i].gray <= gray) {
count++;
}
}
return count / total_pixels;
}
// Otsu's方法二值化函数
void otsu_threshold(Pixel* pixels, int width, int height, int* threshold) {
double max_variance = 0, w1, w2;
double p1, p2, mu1, mu2;
// 起始阈值范围
int min_val = 0, max_val = 255;
while (min_val < max_val) {
double var = 0;
p1 = cumulative_distribution(min_val, pixels, width, height);
p2 = 1 - p1;
if (p1 == 0 || p2 == 0) continue;
mu1 = mean(pixels, width, height, min_val, min_val + 1);
mu2 = mean(pixels, width, height, max_val, max_val + 1);
var = p1 * p2 * pow(mu1 - mu2, 2);
if (var > max_variance) {
max_variance = var;
*threshold = min_val + (max_val - min_val) / 2;
}
min_val++;
}
}
int main() {
// 初始化图像像素数组,假设这里用一维数组表示灰度图像
int width = 8; // 假设宽度和高度一样简单处理
int height = 8;
Pixel* pixels = malloc(width * height * sizeof(Pixel));
// ...填充像素...
int threshold;
otsu_threshold(pixels, width, height, &threshold);
// 将图像转换为二值图像
for (int i = 0; i < width * height; ++i) {
if (pixels[i].gray >= threshold) {
pixels[i].gray = 255;
} else {
pixels[i].gray = 0;
}
}
// 输出结果或保存图像
printf("Threshold: %d\n", threshold);
// ...后续处理...
free(pixels); // 释放内存
return 0;
}
```
注意:这个例子简化了部分细节,实际应用中可能需要考虑边界条件、图像数据输入和输出等更多情况。
阅读全文