pix2pix网络结构代码
时间: 2023-11-12 15:44:43 浏览: 157
pix2pix是一种用于图像到图像的转换的深度学习网络,它可以将一种类型的图像转换为另一种类型的图像。下面是一个基于TensorFlow的pix2pix网络结构的示例代码:
```python
import tensorflow as tf
from tensorflow.keras.layers import *
from tensorflow.keras.models import Model
def downsample(filters, size, apply_batchnorm=True):
initializer = tf.random_normal_initializer(0., 0.02)
result = Sequential()
result.add(Conv2D(filters, size, strides=2, padding='same', kernel_initializer=initializer, use_bias=False))
if apply_batchnorm:
result.add(BatchNormalization())
result.add(LeakyReLU())
return result
def upsample(filters, size, apply_dropout=False):
initializer = tf.random_normal_initializer(0., 0.02)
result = Sequential()
result.add(Conv2DTranspose(filters, size, strides=2, padding='same', kernel_initializer=initializer, use_bias=False))
result.add(BatchNormalization())
if apply_dropout:
result.add(Dropout(0.5))
result.add(ReLU())
return result
def Generator():
inputs = tf.keras.layers.Input(shape=[256, 256, 3])
down_stack = [
downsample(64, 4, apply_batchnorm=False),
downsample(128, 4),
downsample(256, 4),
downsample(512, 4),
downsample(512, 4),
downsample(512, 4),
downsample(512, 4),
downsample(512, 4),
]
up_stack = [
upsample(512, 4, apply_dropout=True),
upsample(512, 4, apply_dropout=True),
upsample(512, 4, apply_dropout=True),
upsample(512, 4),
upsample(256, 4),
upsample(128, 4),
upsample(64, 4),
]
initializer = tf.random_normal_initializer(0., 0.02)
last = Conv2DTranspose(3, 4, strides=2, padding='same', kernel_initializer=initializer)
x = inputs
skips = []
for down in down_stack:
x = down(x)
skips.append(x)
skips = reversed(skips[:-1])
for up, skip in zip(up_stack, skips):
x = up(x)
x = Concatenate()([x, skip])
x = last(x)
return Model(inputs=inputs, outputs=x)
def Discriminator():
initializer = tf.random_normal_initializer(0., 0.02)
inp = Input(shape=[256, 256, 3], name='input_image')
tar = Input(shape=[256, 256, 3], name='target_image')
x = concatenate([inp, tar])
down1 = downsample(64, 4, False)(x)
down2 = downsample(128, 4)(down1)
down3 = downsample(256, 4)(down2)
zero_pad1 = ZeroPadding2D()(down3)
conv = Conv2D(512, 4, strides=1, kernel_initializer=initializer, use_bias=False)(zero_pad1)
batchnorm1 = BatchNormalization()(conv)
leaky_relu = LeakyReLU()(batchnorm1)
zero_pad2 = ZeroPadding2D()(leaky_relu)
last = Conv2D(1, 4, strides=1, kernel_initializer=initializer)(zero_pad2)
return tf.keras.Model(inputs=[inp, tar], outputs=last)
```
这是一个简化版的pix2pix网络结构,你可以根据需要进行修改和扩展。在这个示例中,Generator和Discriminator都是基于Convolutional Neural Network (CNN) 构建的。
阅读全文