随机森林模型原理公式
时间: 2024-04-14 08:25:10 浏览: 301
随机森林算法
随机森林是一种集成学习方法,它由多个决策树组成。每个决策树都是独立训练的,且通过对输入样本进行随机有放回抽样(bootstrap)和随机特征选择来增加模型的多样性。下面是随机森林的原理和公式:
1. 随机抽样:从原始训练集中使用有放回抽样的方式,生成多个不同的训练子集,每个子集的大小与原始训练集相同。
2. 随机特征选择:对于每个决策树的节点,在节点分裂时,随机选择一部分特征进行评估,而不是使用所有特征。这样可以减少特征间的相关性,增加模型的多样性。
3. 决策树训练:对于每个训练子集和随机选择的特征子集,使用决策树算法(如CART)进行训练。决策树根据特征的取值进行分裂,直到达到预定义的停止条件(如树的深度或叶子节点的最小样本数)。
4. 预测:对于新的输入样本,通过将其在每个决策树上进行分类或回归,然后根据投票或平均值来确定最终的预测结果。
随机森林的公式并不是一个具体的数学公式,而是由多个决策树组成的集成模型。每个决策树的训练过程可以使用CART算法,其中涉及到计算基尼指数或信息增益来选择最佳的特征进行分裂。具体的公式可以参考CART算法的相关文献。
阅读全文