running_corrects.double()
时间: 2024-04-21 11:24:25 浏览: 69
这行代码将`running_corrects`的值转换为双精度浮点数类型。
`running_corrects`可能是一个变量或张量,用于跟踪当前阶段(如训练或验证)中正确预测的数量。通过调用`.double()`方法,可以将其值转换为双精度浮点数类型。
转换为双精度浮点数类型可能是为了后续计算准确率或其他需要精确度更高的操作。在深度学习中,通常会进行数值计算和评估指标的计算,因此可能需要使用更高的精度来避免数值溢出或损失精度。
请注意,`.double()`方法只会改变数据类型而不会改变数据本身的值。因此,在使用转换后的结果进行下一步计算时,需要注意数据类型是否匹配和所需的操作是否适用于双精度浮点数类型。
相关问题
使用深度卷积神经网络,(自己构造或者采用预训练模型 VGG, GoogLeNet, ResNet, DenseNet 等),对图像数据集 CIFAR-10(https://www.cs.toronto.edu/~kriz/cifar.html) 进行分类,该数据集的训练集包含 50000 张图片,测试集包含 10000 张图片。 要求:需要把训练集划分出 10000 张图片作为验证集,用来进行模型选择,可以使用 Kaggle 的免费 GPU 进行训练。需要在训练集和测试集上画出 accuracy vs. epochs,在验证 集上画出 loss vs. epochs,总共 3 幅图。
好的,这个任务需要使用深度学习框架,我选择使用PyTorch来完成。
首先,我们需要下载CIFAR-10数据集。可以使用以下代码:
```python
import torchvision.datasets as datasets
import torchvision.transforms as transforms
transform = transforms.Compose([
transforms.RandomHorizontalFlip(), # 数据增强
transforms.RandomCrop(32, padding=4),
transforms.ToTensor(),
transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
])
trainset = datasets.CIFAR10(root='./data', train=True, download=True, transform=transform)
testset = datasets.CIFAR10(root='./data', train=False, download=True, transform=transform)
```
这里我们使用了数据增强来提高模型的泛化能力。
然后,我们需要将训练集划分出一部分作为验证集,可以使用PyTorch中的`SubsetRandomSampler`实现:
```python
import torch.utils.data as data
num_train = len(trainset)
indices = list(range(num_train))
split = int(num_train * 0.2) # 20%的数据作为验证集
np.random.shuffle(indices)
train_idx, valid_idx = indices[split:], indices[:split]
train_sampler = data.sampler.SubsetRandomSampler(train_idx)
valid_sampler = data.sampler.SubsetRandomSampler(valid_idx)
train_loader = data.DataLoader(trainset, batch_size=128, sampler=train_sampler, num_workers=4)
valid_loader = data.DataLoader(trainset, batch_size=128, sampler=valid_sampler, num_workers=4)
test_loader = data.DataLoader(testset, batch_size=128, shuffle=False, num_workers=4)
```
接下来,我们可以定义一个卷积神经网络模型,这里我们使用ResNet18:
```python
import torch.nn as nn
import torch.nn.functional as F
import torchvision.models as models
class ResNet(nn.Module):
def __init__(self):
super(ResNet, self).__init__()
self.resnet = models.resnet18(pretrained=False, num_classes=10)
def forward(self, x):
x = self.resnet(x)
return x
model = ResNet().cuda()
```
在定义好模型后,我们需要定义损失函数和优化器:
```python
import torch.optim as optim
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=0.001)
```
然后,我们可以开始训练模型:
```python
import numpy as np
num_epochs = 20
train_loss = []
valid_loss = []
train_acc = []
valid_acc = []
for epoch in range(num_epochs):
model.train()
running_loss = 0.0
running_corrects = 0
for i, data in enumerate(train_loader):
inputs, labels = data
inputs, labels = inputs.cuda(), labels.cuda()
optimizer.zero_grad()
outputs = model(inputs)
loss = criterion(outputs, labels)
_, preds = torch.max(outputs, 1)
loss.backward()
optimizer.step()
running_loss += loss.item() * inputs.size(0)
running_corrects += torch.sum(preds == labels.data)
epoch_loss = running_loss / len(train_sampler)
epoch_acc = running_corrects.double() / len(train_sampler)
train_loss.append(epoch_loss)
train_acc.append(epoch_acc)
model.eval()
running_loss = 0.0
running_corrects = 0
for i, data in enumerate(valid_loader):
inputs, labels = data
inputs, labels = inputs.cuda(), labels.cuda()
with torch.no_grad():
outputs = model(inputs)
loss = criterion(outputs, labels)
_, preds = torch.max(outputs, 1)
running_loss += loss.item() * inputs.size(0)
running_corrects += torch.sum(preds == labels.data)
epoch_loss = running_loss / len(valid_sampler)
epoch_acc = running_corrects.double() / len(valid_sampler)
valid_loss.append(epoch_loss)
valid_acc.append(epoch_acc)
print('Epoch [{}/{}], Train Loss: {:.4f}, Train Acc: {:.4f}, Valid Loss: {:.4f}, Valid Acc: {:.4f}'
.format(epoch+1, num_epochs, train_loss[-1], train_acc[-1], valid_loss[-1], valid_acc[-1]))
```
最后,我们可以在训练集和测试集上画出accuracy vs. epochs的图像:
```python
import matplotlib.pyplot as plt
plt.plot(train_acc, label='Train')
plt.plot(valid_acc, label='Valid')
plt.xlabel('Epochs')
plt.ylabel('Accuracy')
plt.legend()
plt.show()
```
在验证集上画出loss vs. epochs的图像:
```python
plt.plot(train_loss, label='Train')
plt.plot(valid_loss, label='Valid')
plt.xlabel('Epochs')
plt.ylabel('Loss')
plt.legend()
plt.show()
```
完整代码如下:
用pytorch写一段代码:以西储大学CWRU轴承故障的振动信号数据库作为模型的训练集,故障类型标签包括:正常、内圈故障、外圈故障和滚动体故障四类。首先将一维故障信号转换为二维灰度图作为CNN模型的输...
抱歉,我作为一个语言模型,并不能在物理上执行代码。但是,我可以提供一些代码示例,供您参考。
首先,您需要导入所需的库:
```
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader
from torchvision.transforms import ToTensor, Compose
from torchvision.datasets import ImageFolder
```
然后,您需要定义转换函数将一维信号转换为二维灰度图:
```
def signal_to_image(signal):
image = signal.reshape(1, -1)
image = (image - image.min()) / (image.max() - image.min())
image = image.reshape(1, 1, -1)
return image
```
接下来,您需要定义一个自定义数据集类来加载数据:
```
class SignalDataset(ImageFolder):
def __getitem__(self, index):
path, target = self.imgs[index]
signal = np.loadtxt(path)
image = signal_to_image(signal)
return image, target
```
然后,您需要定义CNN模型:
```
class CNN(nn.Module):
def __init__(self):
super(CNN, self).__init__()
self.conv1 = nn.Conv2d(1, 32, kernel_size=3, padding=1)
self.conv2 = nn.Conv2d(32, 64, kernel_size=3, padding=1)
self.fc1 = nn.Linear(64 * 32 * 32, 128)
self.fc2 = nn.Linear(128, 4)
def forward(self, x):
x = F.relu(self.conv1(x))
x = F.max_pool2d(x, 2)
x = F.relu(self.conv2(x))
x = F.max_pool2d(x, 2)
x = x.view(-1, 64 * 32 * 32)
x = F.relu(self.fc1(x))
x = self.fc2(x)
return x
```
接下来,您需要定义训练循环:
```
def train(model, train_loader, criterion, optimizer):
model.train()
running_loss = 0.0
for inputs, targets in train_loader:
inputs = inputs.to(device)
targets = targets.to(device)
optimizer.zero_grad()
outputs = model(inputs)
loss = criterion(outputs, targets)
loss.backward()
optimizer.step()
running_loss += loss.item() * inputs.size(0)
epoch_loss = running_loss / len(train_loader.dataset)
return epoch_loss
```
最后,您需要定义测试循环:
```
def test(model, test_loader, criterion):
model.eval()
running_loss = 0.0
corrects = 0
for inputs, targets in test_loader:
inputs = inputs.to(device)
targets = targets.to(device)
outputs = model(inputs)
loss = criterion(outputs, targets)
running_loss += loss.item() * inputs.size(0)
preds = outputs.argmax(dim=1)
corrects += torch.sum(preds == targets.data)
epoch_loss = running_loss / len(test_loader.dataset)
epoch_acc = corrects.double() / len(test_loader.dataset)
return epoch_loss, epoch_acc
```
最后,您需要加载数据集并开始训练:
```
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
transform = Compose([ToTensor()])
train_dataset = SignalDataset('path/to/train/dataset', transform=transform)
test_dataset = SignalDataset('path/to/test/dataset', transform=transform)
train_loader = DataLoader(train_dataset, batch_size=64, shuffle=True)
test_loader = DataLoader(test_dataset, batch_size=64, shuffle=False)
model = CNN().to(device)
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters())
for epoch in range(10):
train_loss = train(model, train_loader, criterion, optimizer)
test_loss, test_acc = test(model, test_loader, criterion)
print(f'Epoch {epoch + 1}: Train Loss = {train_loss:.4f}, Test Loss = {test_loss:.4f}, Test Acc = {test_acc:.4f}')
```
阅读全文