vit_pytorch 有监督分类
时间: 2024-06-14 17:04:47 浏览: 194
vit-pytorch是一个用于实现Vision Transformer(ViT)模型的PyTorch库。ViT是一种基于Transformer架构的图像分类模型,它将图像分割成小的图块,并使用Transformer编码器来处理这些图块。下面是使用vit-pytorch进行有监督分类的示例代码:
```python
import torch
from torch import nn
from torchvision import transforms
from torchvision.datasets import CIFAR10
from torch.utils.data import DataLoader
from vit_pytorch import ViT
# 加载CIFAR10数据集
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
])
train_dataset = CIFAR10(root='./data', train=True, download=True, transform=transform)
test_dataset = CIFAR10(root='./data', train=False, download=True, transform=transform)
train_loader = DataLoader(train_dataset, batch_size=64, shuffle=True)
test_loader = DataLoader(test_dataset, batch_size=64, shuffle=False)
# 初始化ViT模型
model = ViT(
image_size=32,
patch_size=4,
num_classes=10,
dim=512,
depth=6,
heads=8,
mlp_dim=1024,
dropout=0.1,
emb_dropout=0.1
)
# 定义损失函数和优化器
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=0.001)
# 训练模型
num_epochs = 10
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)
for epoch in range(num_epochs):
model.train()
for images, labels in train_loader:
images = images.to(device)
labels = labels.to(device)
# 前向传播
outputs = model(images)
loss = criterion(outputs, labels)
# 反向传播和优化
optimizer.zero_grad()
loss.backward()
optimizer.step()
# 在测试集上评估模型
model.eval()
with torch.no_grad():
correct = 0
total = 0
for images, labels in test_loader:
images = images.to(device)
labels = labels.to(device)
outputs = model(images)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
accuracy = 100 * correct / total
print(f"Epoch [{epoch+1}/{num_epochs}], Test Accuracy: {accuracy:.2f}%")
# 保存模型
torch.save(model.state_dict(), "vit_model.pth")
```
这段代码使用CIFAR10数据集进行训练和测试,将图像大小设置为32x32,使用4x4的图块作为输入,输出10个类别的预测结果。模型的参数可以根据需要进行调整。训练过程中,使用交叉熵损失函数和Adam优化器进行模型训练,并在每个epoch结束后在测试集上评估模型的准确率。最后,将训练好的模型保存到`vit_model.pth`文件中。
阅读全文