yolov8读取视频
时间: 2023-11-08 13:05:10 浏览: 79
很抱歉,yolov8并不是一个已知的模型或库,可能是您自己开发的模型或者笔误。如果您是想问如何使用YOLOv3或YOLOv4读取视频,可以使用OpenCV库中的VideoCapture类来实现。以下是一个使用YOLOv4读取视频并进行目标检测的示例代码:
```python
import cv2
import numpy as np
# 加载YOLOv4模型
net = cv2.dnn.readNetFromDarknet('yolov4.cfg', 'yolov4.weights')
net.setPreferableBackend(cv2.dnn.DNN_BACKEND_CUDA)
net.setPreferableTarget(cv2.dnn.DNN_TARGET_CUDA)
# 加载类别标签
classes = []
with open('coco.names', 'r') as f:
classes = [line.strip() for line in f.readlines()]
# 读取视频
cap = cv2.VideoCapture('test.mp4')
while True:
# 读取一帧
ret, frame = cap.read()
if not ret:
break
# 对帧进行目标检测
blob = cv2.dnn.blobFromImage(frame, 1/255.0, (416, 416), swapRB=True, crop=False)
net.setInput(blob)
layer_names = net.getLayerNames()
output_layers = [layer_names[i[0] - 1] for i in net.getUnconnectedOutLayers()]
outputs = net.forward(output_layers)
boxes = []
confidences = []
class_ids = []
for output in outputs:
for detection in output:
scores = detection[5:]
class_id = np.argmax(scores)
confidence = scores[class_id]
if confidence > 0.5:
center_x = int(detection[0] * frame.shape[1])
center_y = int(detection[1] * frame.shape[0])
w = int(detection[2] * frame.shape[1])
h = int(detection[3] * frame.shape[0])
x = int(center_x - w/2)
y = int(center_y - h/2)
boxes.append([x, y, w, h])
confidences.append(float(confidence))
class_ids.append(class_id)
# 非极大值抑制
indices = cv2.dnn.NMSBoxes(boxes, confidences, 0.5, 0.4)
# 绘制检测结果
for i in indices:
i = i[0]
x, y, w, h = boxes[i]
label = classes[class_ids[i]]
confidence = confidences[i]
color = (0, 255, 0)
cv2.rectangle(frame, (x, y), (x+w, y+h), color, 2)
cv2.putText(frame, f'{label} {confidence:.2f}', (x, y-10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, color, 2)
# 显示结果
cv2.imshow('frame', frame)
if cv2.waitKey(1) == ord('q'):
break
# 释放资源
cap.release()
cv2.destroyAllWindows()
```
阅读全文