多元线性回归方程求解matlab
时间: 2023-08-20 12:13:53 浏览: 154
多元线性回归方程的求解可以使用MATLAB中的regress函数。该函数可以根据给定的自变量和因变量数据,计算出回归系数的点估计和区间估计,并进行回归模型的检验。具体步骤如下:
1. 首先,需要准备好自变量和因变量的数据。自变量可以是多个,以矩阵的形式表示,而因变量则是一个向量。
2. 使用regress函数进行回归分析。函数的输入参数包括因变量和自变量的数据,以及一个常数项的列向量(全为1)作为自变量矩阵的第一列。例如,可以使用以下代码进行回归分析:
\[b, bint, r, rint, stats\] = regress(TotalEnergy, IndeVariable);
其中,TotalEnergy是因变量的数据,IndeVariable是自变量矩阵。
3. 函数的输出结果包括回归系数的点估计b,回归系数的区间估计bint,残差r,残差的区间估计rint,以及回归模型的统计信息stats。
回归系数的点估计b表示自变量对因变量的影响程度,回归系数的区间估计bint表示对回归系数的置信区间估计。
残差r表示实际观测值与回归模型预测值之间的差异,残差的区间估计rint表示对残差的置信区间估计。
回归模型的统计信息stats包括回归模型的R方值、调整R方值、F统计量和p值等。
通过以上步骤,可以使用MATLAB求解多元线性回归方程并得到相关的统计结果。
#### 引用[.reference_title]
- *1* *2* *3* [基于matlab的多元线性回归分析](https://blog.csdn.net/xiaoxiaodawei/article/details/105707346)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insertT0,239^v3^insert_chatgpt"}} ] [.reference_item]
[ .reference_list ]
阅读全文