np.random.poisson(lam=self.UE_num)改成均匀随机分布

时间: 2024-09-19 16:16:01 浏览: 74
`np.random.poisson(lam=self.UE_num)`生成的是泊松分布随机数,它描述的是在一定时间内发生事件的平均次数。如果你想将这个结果转换成均匀分布,可以先计算泊松分布得到的期望值(即lam参数的值),然后利用`np.random.uniform`函数从0到该期望值范围内生成均匀随机数。 假设`self.UE_num`就是泊松分布的λ参数,你可以这样做: ```python import numpy as np # 计算均匀分布的范围 uniform_min = 0 uniform_max = self.UE_num # 生成均匀分布的随机数 random_uniform = np.random.uniform(low=uniform_min, high=uniform_max, size=None) ``` 这里`size=None`表示生成一个与`self.UE_num`大小相同的数组,如果需要生成特定数量的随机数,可以传入相应的整数作为size参数。 请注意,泊松分布本身就具有一定的随机性,如果你需要完全控制生成的结果,那么均匀分布可能不是一个理想选择。但是,如果你确实想模拟类似的行为,上述代码可以提供一种解决方案。
相关问题

image=np.array(grayImage,dtype=float) percent=0.001 num=int(percent*image.shape[0]*image.shape[1]) for i in range(num): temp1=np.random.randint(image.shape[0]) temp2=np.random.randint(image.shape[1]) scale=150 noise=np.random.poisson(scale,1) image[temp1][temp2]+=noise out=image if out.min()<0: low_clip=-1. else: low_clip=0. out=np.clip(out,low_clip,255) expon_image=np.uint8(out) print(expon_image.shape) cv2.imshow("expon_image",expon_image) k=cv2.waitKey(0)优化这段代码的for循环

可以使用numpy的随机函数生成随机的坐标,然后使用numpy的切片和花式索引方式对图像进行操作,可以避免使用循环。 以下是优化后的代码: ```python import numpy as np import cv2 grayImage = cv2.imread('test.jpg', 0) # 转换为浮点型 image = grayImage.astype(float) percent = 0.001 num = int(percent * image.shape[0] * image.shape[1]) # 生成随机坐标 rand_x = np.random.randint(0, image.shape[0], num) rand_y = np.random.randint(0, image.shape[1], num) scale = 150 noise = np.random.poisson(scale, num) # 对图像进行操作 image[rand_x, rand_y] += noise # 调整像素值范围 out = np.clip(image, 0, 255) # 转换为8位整型 expon_image = out.astype(np.uint8) print(expon_image.shape) cv2.imshow("expon_image", expon_image) k = cv2.waitKey(0) ``` 使用numpy的切片和花式索引方式,可以避免使用循环,提高代码的效率。同时,也需要注意对图像进行操作时,需要保证图像的类型一致,避免出现类型错误的问题。

for model in models: mesh_dir = os.path.join(model_root, model, 'textured.obj') save_dir = os.path.join(save_root, model) os.makedirs(save_dir, exist_ok=True) print('Read mesh from:', mesh_dir) mesh = o3d.io.read_triangle_mesh(mesh_dir) v = np.asarray(mesh.vertices) f = np.asarray(mesh.triangles) n = np.asarray(mesh.vertex_normals) v_poisson, n_poisson = pcu.sample_mesh_poisson_disk(v, f, n, num_samples=-1, radius=0.0002, use_geodesic_distance=True)

根据你提供的代码,可以看出pcu.sample_mesh_poisson_disk()是一个函数,用于在三角网格上进行Poisson磁盘采样。函数需要以下参数: - vertices:形状为(n, 3)的NumPy数组,表示三角网格的顶点坐标。 - triangles:形状为(m, 3)的NumPy数组,表示三角网格的面信息。 - vertex_normals:形状为(n, 3)的NumPy数组,表示每个顶点的法向量。 - num_samples:int类型,表示采样的点数。如果num_samples<=0,则会自动计算采样点数。 - radius:float类型,表示Poisson磁盘采样的半径。 - use_geodesic_distance:bool类型,表示是否使用测地距离来计算采样点之间的最小距离。 函数返回两个值: - v_poisson:形状为(num_samples, 3)的NumPy数组,表示采样得到的点的坐标。 - n_poisson:形状为(num_samples, 3)的NumPy数组,表示采样得到的点的法向量。 在你提供的代码中,函数被调用时传递了三角网格的顶点坐标v,面信息f和顶点法向量n,以及其他参数。函数返回的采样点坐标和法向量被分别赋值给了v_poisson和n_poisson。这些点可以用于后续的操作,例如点云配准等。
阅读全文

相关推荐

import random import numpy as np import math from sklearn.cluster import KMeans #定义状态空间,每个时间片是一个决策阶段,时间片结束点的时刻为决策点 # 划分时间片,划分成了从0-100min的10个决策片,也就是我们整个过程的决策点,在每个时间片的右区间做出决策 scene = [] time_slices = np.linspace(0, 100, 11) # def calculate_distance(p1, p2): # # 计算两点之间的欧几里得距离 # return ((p1[0] - p2[0]) ** 2 + (p1[1] - p2[1]) ** 2) ** 0.5 # 生成随机场景 for i in range(len(time_slices) - 1): start_time, end_time = time_slices[i], time_slices[i + 1] order_counts = np.random.poisson(4) # 每个时间段平均有4个订单 driver_counts = np.random.poisson(2) # 每个时间段平均有2个司机 decision_id = i + 1 decision_time = time_slices[i + 1] for j in range(order_counts): order_id =j+1 #order_time = int(random.uniform(start_time, end_time)) order_x, order_y = int(random.uniform(0, 10)), int(random.uniform(0, 10)) order_state = 1 for m in range(driver_counts): driver1_id = m + 1 # driver1_time = int(random.uniform(start_time, end_time)) driver1_x, driver1_y = int(random.uniform(0, 10)), int(random.uniform(0, 10)) driver1_deadline = 100 scene.append({"决策阶段":decision_id,"决策时间":decision_time,"订单编号":order_id,"坐标":(order_x, order_y),"订单状态":order_state},"司机编号":driver1_id,"司机目的地":(driver1_x, driver1_y),"初始路径":[(0,0),(driver1_x, driver1_y)],"最晚可用时间":driver1_deadline})

最新推荐

recommend-type

python统计函数库scipy.stats的用法解析

`scipy.stats`库提供了多种常见的统计分布,如正态分布`norm`、指数分布`expon`、卡方分布`chi2`、二项分布`binom`、泊松分布`poisson`等。这些分布广泛应用于统计建模和数据分析中。 通过`scipy.stats`,你可以...
recommend-type

基于.NET Ocelot网关的GatewayProject设计源码

该项目为基于.NET框架的Ocelot网关解决方案——GatewayProject的设计源码,包含39个文件,涵盖15个C#源代码文件、11个JSON配置文件、3个项目文件、2个解决方案文件、1个Git忽略文件、以及其他几种类型文件。该系统集成了Ocelot网关,适用于构建分布式微服务架构中的API网关功能。
recommend-type

编程心得体会.pptx

编程心得体会.pptx
recommend-type

3DMAX镂空星花球建模插件FloralStarBall下载

就是那个3DMAX镂空星花球建模,再也不用手动做了,使用这个插件可以一键生成! 3DMAX镂空星花球建模插件FloralStarBall,经典星形球体的美丽变体。星形图案以花卉风格排列,赋予物体独特的视觉美感。它将成为任何Math Art收藏、桌面展品甚至柔性塑料印刷的应力释放器的绝佳补充。 一键生成竟然不费吹灰之力!
recommend-type

c语言电子时钟程序.zip

c语言电子时钟程序
recommend-type

易语言例程:用易核心支持库打造功能丰富的IE浏览框

资源摘要信息:"易语言-易核心支持库实现功能完善的IE浏览框" 易语言是一种简单易学的编程语言,主要面向中文用户。它提供了大量的库和组件,使得开发者能够快速开发各种应用程序。在易语言中,通过调用易核心支持库,可以实现功能完善的IE浏览框。IE浏览框,顾名思义,就是能够在一个应用程序窗口内嵌入一个Internet Explorer浏览器控件,从而实现网页浏览的功能。 易核心支持库是易语言中的一个重要组件,它提供了对IE浏览器核心的调用接口,使得开发者能够在易语言环境下使用IE浏览器的功能。通过这种方式,开发者可以创建一个具有完整功能的IE浏览器实例,它不仅能够显示网页,还能够支持各种浏览器操作,如前进、后退、刷新、停止等,并且还能够响应各种事件,如页面加载完成、链接点击等。 在易语言中实现IE浏览框,通常需要以下几个步骤: 1. 引入易核心支持库:首先需要在易语言的开发环境中引入易核心支持库,这样才能在程序中使用库提供的功能。 2. 创建浏览器控件:使用易核心支持库提供的API,创建一个浏览器控件实例。在这个过程中,可以设置控件的初始大小、位置等属性。 3. 加载网页:将浏览器控件与一个网页地址关联起来,即可在控件中加载显示网页内容。 4. 控制浏览器行为:通过易核心支持库提供的接口,可以控制浏览器的行为,如前进、后退、刷新页面等。同时,也可以响应浏览器事件,实现自定义的交互逻辑。 5. 调试和优化:在开发完成后,需要对IE浏览框进行调试,确保其在不同的操作和网页内容下均能够正常工作。对于性能和兼容性的问题需要进行相应的优化处理。 易语言的易核心支持库使得在易语言环境下实现IE浏览框变得非常方便,它极大地降低了开发难度,并且提高了开发效率。由于易语言的易用性,即使是初学者也能够在短时间内学会如何创建和操作IE浏览框,实现网页浏览的功能。 需要注意的是,由于IE浏览器已经逐渐被微软边缘浏览器(Microsoft Edge)所替代,使用IE核心的技术未来可能面临兼容性和安全性的挑战。因此,在实际开发中,开发者应考虑到这一点,并根据需求选择合适的浏览器控件实现技术。 此外,易语言虽然简化了编程过程,但其在功能上可能不如主流的编程语言(如C++, Java等)强大,且社区和技术支持相比其他语言可能较为有限,这些都是在选择易语言作为开发工具时需要考虑的因素。 文件名列表中的“IE类”可能是指包含实现IE浏览框功能的类库或者示例代码。在易语言中,类库是一组封装好的代码模块,其中包含了各种功能的实现。通过在易语言项目中引用这些类库,开发者可以简化开发过程,快速实现特定功能。而示例代码则为开发者提供了具体的实现参考,帮助理解和学习如何使用易核心支持库来创建IE浏览框。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

STM32F407ZG引脚功能深度剖析:掌握引脚分布与配置的秘密(全面解读)

![STM32F407ZG引脚功能深度剖析:掌握引脚分布与配置的秘密(全面解读)](https://tapit.vn/wp-content/uploads/2019/01/cubemx-peripheral-1024x545.png) # 摘要 本文全面介绍了STM32F407ZG微控制器的引脚特性、功能、配置和应用。首先概述了该芯片的引脚布局,然后详细探讨了标准外设、高级控制以及特殊功能引脚的不同配置和使用方法。在此基础上,文章深入分析了引脚模式配置、高级配置技巧,并提供了实际应用案例,如LED控制和串口通信。在设计方面,阐述了引脚布局策略、多层板设计及高密度引脚应用的解决方案。最后,介绍
recommend-type

给出文档中问题的答案代码

您提到的是需要编写MATLAB代码来实现文档中的实验任务。以下是根据文档内容编写的MATLAB代码示例: ```matlab % 上机2 实验代码 % 读取输入图像 inputImage = imread('your_face_image.jpg'); % 替换为您的图像文件路径 if size(inputImage, 1) < 1024 || size(inputImage, 2) < 1024 error('图像尺寸必须大于1024x1024'); end % 将彩色图像转换为灰度图像 grayImage = rgb2gray(inputImage); % 调整图像大小为5
recommend-type

Docker构建与运行Next.js应用的指南

资源摘要信息:"rivoltafilippo-next-main" 在探讨“rivoltafilippo-next-main”这一资源时,首先要从标题“rivoltafilippo-next”入手。这个标题可能是某一项目、代码库或应用的命名,结合描述中提到的Docker构建和运行命令,我们可以推断这是一个基于Docker的Node.js应用,特别是使用了Next.js框架的项目。Next.js是一个流行的React框架,用于服务器端渲染和静态网站生成。 描述部分提供了构建和运行基于Docker的Next.js应用的具体命令: 1. `docker build`命令用于创建一个新的Docker镜像。在构建镜像的过程中,开发者可以定义Dockerfile文件,该文件是一个文本文件,包含了创建Docker镜像所需的指令集。通过使用`-t`参数,用户可以为生成的镜像指定一个标签,这里的标签是`my-next-js-app`,意味着构建的镜像将被标记为`my-next-js-app`,方便后续的识别和引用。 2. `docker run`命令则用于运行一个Docker容器,即基于镜像启动一个实例。在这个命令中,`-p 3000:3000`参数指示Docker将容器内的3000端口映射到宿主机的3000端口,这样做通常是为了让宿主机能够访问容器内运行的应用。`my-next-js-app`是容器运行时使用的镜像名称,这个名称应该与构建时指定的标签一致。 最后,我们注意到资源包含了“TypeScript”这一标签,这表明项目可能使用了TypeScript语言。TypeScript是JavaScript的一个超集,它添加了静态类型定义的特性,能够帮助开发者更容易地维护和扩展代码,尤其是在大型项目中。 结合资源名称“rivoltafilippo-next-main”,我们可以推测这是项目的主目录或主仓库。通常情况下,开发者会将项目的源代码、配置文件、构建脚本等放在一个主要的目录中,这个目录通常命名为“main”或“src”等,以便于管理和维护。 综上所述,我们可以总结出以下几个重要的知识点: - Docker容器和镜像的概念以及它们之间的关系:Docker镜像是静态的只读模板,而Docker容器是从镜像实例化的动态运行环境。 - `docker build`命令的使用方法和作用:这个命令用于创建新的Docker镜像,通常需要一个Dockerfile来指定构建的指令和环境。 - `docker run`命令的使用方法和作用:该命令用于根据镜像启动一个或多个容器实例,并可指定端口映射等运行参数。 - Next.js框架的特点:Next.js是一个支持服务器端渲染和静态网站生成的React框架,适合构建现代的Web应用。 - TypeScript的作用和优势:TypeScript是JavaScript的一个超集,它提供了静态类型检查等特性,有助于提高代码质量和可维护性。 - 项目资源命名习惯:通常项目会有一个主目录,用来存放项目的源代码和核心配置文件,以便于项目的版本控制和团队协作。 以上内容基于给定的信息进行了深入的分析,为理解该项目的构建、运行方式以及技术栈提供了基础。在实际开发中,开发者应当参考更详细的文档和指南,以更高效地管理和部署基于Docker和TypeScript的Next.js项目。