多目标优化算法评价指标matlab代码
时间: 2023-09-02 11:15:33 浏览: 848
多目标优化算法评价指标.zip
3星 · 编辑精心推荐
可以使用以下matlab代码来评价多目标优化算法的评价指标:
```matlab
% 计算spread指标
function spread_value = calculate_spread(front)
[~, num_objectives = size(front);
reference_point = max(front);
d = sqrt(sum((reference_point - front).^2, 2));
spread_value = sqrt(sum(d.^2)) / (num_objectives * sqrt(numel(front)));
end
% 计算IGD指标
function igd_value = calculate_igd(front, true_front)
[~, num_objectives = size(front);
distances = pdist2(front, true_front);
igd_value = mean(min(distances, [], 2));
end
% 计算GD指标
function gd_value = calculate_gd(front, true_front)
[~, num_objectives = size(front);
distances = pdist2(front, true_front);
gd_value = sqrt(sum(min(distances, [], 2).^2)) / numel(front);
end
% 计算RNI指标
function rni_value = calculate_rni(front, true_front)
[~, num_objectives = size(front);
distances = pdist2(front, true_front);
rni_value = sum(min(distances, [], 2) <= 1e-3) / numel(front);
end
```
这段代码定义了四个函数:`calculate_spread`用于计算spread指标,`calculate_igd`用于计算IGD指标,`calculate_gd`用于计算GD指标,`calculate_rni`用于计算RNI指标。它们分别接受两个参数,`front`和`true_front`,分别代表待评估的前沿解集和真实前沿解集。这些函数根据指标的计算公式进行计算,并返回相应的评价值。
请注意,这段代码只是一个示例,你需要根据具体的评价指标和计算公式进行相应的修改和扩展。<span class="em">1</span><span class="em">2</span><span class="em">3</span>
#### 引用[.reference_title]
- *1* [多目标优化算法评价指标.zip](https://download.csdn.net/download/weixin_40820759/11888845)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"]
- *2* *3* [多目标优化算法:多目标蛇优化算法MOSO(提供MATLAB代码)](https://blog.csdn.net/weixin_46204734/article/details/123760307)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"]
[ .reference_list ]
阅读全文