plt = re.findall(r'\"view_price\"\:\"[\d\.]*\"',html) tlt = re.findall(r'\"raw_title\"\:\".*?\"',html)

时间: 2023-08-22 12:09:22 浏览: 91
在给定的代码中,使用re.findall()函数和正则表达式从一个名为html的字符串中提取特定模式的数据。 1. 对于变量plt,使用正则表达式r'\"view_price\"\:\"[\d\.]*\"'。该正则表达式匹配以"view_price":"开头,后面跟着0个或多个数字或小数点(.)的字符串。在给定的html字符串中,该正则表达式会提取所有符合该模式的数据,并返回一个包含所有匹配项的列表。 2. 对于变量tlt,使用正则表达式r'\"raw_title\"\:\".*?\"'。该正则表达式匹配以"raw_title":"开头,后面跟着任意字符(除换行符)的字符串,并以"结尾。使用非贪婪模式.*?确保尽可能少地匹配字符。在给定的html字符串中,该正则表达式会提取所有符合该模式的数据,并返回一个包含所有匹配项的列表。 最终,plt和tlt将分别包含所有匹配到的"view_price"和"raw_title"字段的数据。
相关问题

plt = re.findall(r'\"view_price\"\:\"[\d\.]*\"', html)

plt = re.findall(r'\"view_price\"\:\"[\d\.]*\"', html)这句话是用来从html中提取出价格的。它使用了正则表达式r'\"view_price\"\:\"[\d\.]*\"',这个表达式可以匹配到以"view_price":"数字"的形式表示的价格信息。其中,[\d\.]表示数字和小数点的任意组合,*表示匹配0个或多个该组合。通过该正则表达式,可以提取出所有的价格信息并放入plt列表中。

import requests # 导入网页请求库 from bs4 import BeautifulSoup # 导入网页解析库 import pandas as pd import numpy as np import re import matplotlib.pyplot as plt from pylab import mpl danurl=[]; def get_danurl(surl): r=requests.get(surl) r.encoding='utf-8' demo=r.text soup=BeautifulSoup(demo,"html.parser") wangzhi=soup.find_all('a',string=re.compile('杭州市小客车增量指标竞价情况')) list3=' '.join('%s' %id for id in wangzhi) res_url=r'href="(.*?)"' alink = re.findall(res_url, list3, re.I | re.S | re.M) return alink def get_page(url): mydict={} r=requests.get(url) r.encoding='utf-8' demo=r.text #print(demo) soup=BeautifulSoup(demo,"html.parser") try: duan2=soup.find_all('p',class_="p")[0].text duan3=soup.find_all('p',class_="p")[2].text pattern3 = re.compile(r'(?<=个人)\d+.?\d*') gerenbj=pattern3.findall(duan2)[0] jingjiariqi=soup.find_all('p',class_="p")[0].text.split('。')[0] except IndexError: duan2=soup.find_all('p',class_="p")[2].text duan3=soup.find_all('p',class_="p")[4].text pattern3 = re.compile(r'(?<=个人)\d+.?\d*') gerenbj=pattern3.findall(duan2)[0] jingjiariqi=soup.find_all('p',class_="p")[2].text.split('。')[0] duan1=soup.find_all('p')[1].text pattern1 = re.compile(r'(?<=个人增量指标)\d+.?\d*') gerenzb=pattern1.findall(duan1)[0] pattern2 = re.compile(r'(?<=单位增量指标)\d+.?\d*') danweizb=pattern2.findall(duan1)[0] pattern4 = re.compile(r'(?<=单位)\d+.?\d*') danweibj=pattern4.findall(duan2)[0] pattern5 = re.compile(r'(?<=个人)\d+.?\d*') mingerencjj=pattern5.findall(duan3)[0] avegerencjj=pattern5.findall(duan3)[1] pattern6 = re.compile(r'(?<=单位)\d+.?\d*') mindanweicjj=pattern6.findall(duan3)[0] avedanweicjj=pattern6.findall(duan3)[1] pattern7 = re.compile(r'(?<=成交)\d+.?\d*') mingerencjs=pattern7.findall(duan3)[0] mindanweicjs=pattern7.findall(duan3)[1] 解释代码

这段代码是用来爬取杭州市小客车增量指标竞价情况的数据。首先导入了requests库和BeautifulSoup库,用于进行网页请求和解析。然后定义了一个函数`get_danurl`,用于获取竞价情况网页的链接。函数中首先发送一个GET请求获取网页内容,然后使用BeautifulSoup进行解析,找到所有包含"杭州市小客车增量指标竞价情况"文本的链接,并通过正则表达式提取出链接地址。接下来是`get_page`函数,用于获取具体页面的数据。函数中同样发送一个GET请求获取网页内容,并使用BeautifulSoup进行解析。然后通过一些规则提取出所需的数据,如个人增量指标、单位增量指标、个人竞价、单位竞价、个人成交、单位成交等。最后返回一个包含这些数据的字典。
阅读全文

相关推荐

import requests from bs4 import BeautifulSoup import matplotlib.pyplot as plt import pandas as pd PLAYERS_LIMIT = 25 TABLE_CLASS_NAME = "players_table" plt.rcParams['font.sans-serif'] = ['SimHei'] plt.rcParams['axes.unicode_minus'] = False def get_top_players_scores(limit=PLAYERS_LIMIT, table_class_name=TABLE_CLASS_NAME): url = "https://nba.hupu.com/stats/players" response = requests.get(url) soup = BeautifulSoup(response.text, "html.parser") players = [] scores = [] table = soup.find("table", class_=table_class_name) rows = table.find_all("tr") for row in rows[1:limit+1]: cols = row.find_all("td") player = cols[1].text.strip() score_range = cols[4].text.strip() score_parts = score_range.split("-") min_score = float(score_parts[0]) max_score = float(score_parts[1]) score = int((min_score + max_score) / 2) players.append(player) scores.append(score) return players, scores def plot_top_players_scores(players, scores): data = {"Player": players, "Score": scores} df = pd.DataFrame(data) fig, ax = plt.subplots(figsize=(12, 6)) ax.bar(players, scores, color='green', alpha=0.6) ax.set_xlabel('球员', fontsize=12) ax.set_ylabel('得分', fontsize=12) ax.set_title('NBA球员得分', fontsize=14) plt.xticks(rotation=45, ha='right', fontsize=8) ax.spines['top'].set_visible(False) ax.spines['right'].set_visible(False) for i, score in enumerate(scores): ax.text(i, score+0.5, str(score), ha='center', va='bottom') writer = pd.ExcelWriter('plot_top_players_scores.xlsx') df.to_excel(writer, index=False) writer.save() fig.tight_layout() plt.show() if __name__ == "__main__": players, scores = get_top_players_scores() plot_top_players_scores(players, scores)这段代码生成的excel损坏

给下面这段代码中的预测结果实现可视化操作:from sklearn.feature_extraction.text import CountVectorizer from sklearn.naive_bayes import MultinomialNB import jieba from sklearn.model_selection import train_test_split import numpy as np import matplotlib.pyplot as plt good_comments = [] bad_comments = [] with open('D:\PyCharmProjects\爬虫测试\好评.txt', 'r', encoding='gbk') as f: for line in f.readlines(): good_comments.append(line.strip('\n')) with open('D:\PyCharmProjects\爬虫测试\差评.txt', 'r', encoding='gbk') as f: for line in f.readlines(): bad_comments.append(line.strip('\n')) with open('StopWords.txt', 'r', encoding='utf-8') as f: stopwords = f.read().splitlines() good_words = [] for line in good_comments: words = jieba.cut(line, cut_all=False) words = [w for w in words if w not in stopwords] good_words.append(' '.join(words)) bad_words = [] for line in bad_comments: words = jieba.cut(line, cut_all=False) words = [w for w in words if w not in stopwords] bad_words.append(' '.join(words)) # 将文本转换为向量 vectorizer = CountVectorizer() X = vectorizer.fit_transform(good_words + bad_words) y = [1] * len(good_words) + [0] * len(bad_words) # 将数据分为训练集和测试集 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2) # 训练模型 clf = MultinomialNB() clf.fit(X_train, y_train) # 测试模型并计算准确率 pred = clf.predict(X_test) accuracy = sum(pred == y_test) / len(y_test) print('准确率:{:.2%}'.format(accuracy)) # 预测新数据的类别 with open('测试评论.txt', 'r', encoding='utf-8') as f: count = 0 for line in f.readlines(): count += 1 test_text = line.strip('\n') test_words = ' '.join(jieba.cut(test_text, cut_all=False)) test_vec = vectorizer.transform([test_words]) pred = clf.predict(test_vec) if pred[0] == 1: print(count, '好评') else: print(count, '差评')

import numpy as np import pandas as pd import matplotlib.pyplot as plt df=pd.read_csv('C:\\Users\ASUS\Desktop\AI\实训\汽车销量数据new.csv',sep=',',header=0) plt.rcParams['font.sans-serif'] = ['SimHei'] plt.figure(figsize=(10,4)) ax1=plt.subplot(121) ax1.scatter(df['price'],df['quantity'],c='b') df=(df-df.min())/(df.max()-df.min()) df.to_csv('quantity.txt',sep='\t',index=False) train_data=df.sample(frac=0.8,replace=False) test_data=df.drop(train_data.index) x_train=train_data['price'].values.reshape(-1, 1) y_train=train_data['quantity'].values x_test=test_data['price'].values.reshape(-1, 1) y_test=test_data['quantity'].values from sklearn.linear_model import LinearRegression import joblib #model=SGDRegressor(max_iter=500,learning_rate='constant',eta0=0.01) model = LinearRegression() #训练模型 model.fit(x_train,y_train) #输出训练结果 pre_score=model.score(x_train,y_train) print('训练集准确性得分=',pre_score) print('coef=',model.coef_,'intercept=',model.intercept_) #保存训练后的模型 joblib.dump(model,'LinearRegression.model') ax2=plt.subplot(122) ax2.scatter(x_train,y_train,label='测试集') ax2.plot(x_train,model.predict(x_train),color='blue') ax2.set_xlabel('工龄') ax2.set_ylabel('工资') plt.legend(loc='upper left') model=joblib.load('LinearRegression.model') y_pred=model.predict(x_test)#得到预测值 print('测试集准确性得分=%.5f'%model.score(x_test,y_test)) #计算测试集的损失(用均方差) MSE=np.mean((y_test - y_pred)**2) print('损失MSE={:.5f}'.format(MSE)) plt.rcParams['font.sans-serif'] = ['SimHei'] plt.figure(figsize=(10,4)) ax1=plt.subplot(121) plt.scatter(x_test,y_test,label='测试集') plt.plot(x_test,y_pred,'r',label='预测回归线') ax1.set_xlabel('工龄') ax1.set_ylabel('工资') plt.legend(loc='upper left') ax2=plt.subplot(122) x=range(0,len(y_test)) plt.plot(x,y_test,'g',label='真实值') plt.plot(x,y_pred,'r',label='预测值') ax2.set_xlabel('样本序号') ax2.set_ylabel('工资') plt.legend(loc='upper right') plt.show()怎么预测价格为15万时的销量

import pandas as pd import numpy as np import matplotlib.pyplot as plt import jieba import requests import re from io import BytesIO import imageio # 设置城市和时间 city = '上海' year = 2021 quarter = 2 # 爬取数据 url = f'http://tianqi.2345.com/t/wea_history/js/{city}/{year}/{quarter}.js' response = requests.get(url) text = response.content.decode('gbk') # 正则表达式匹配 pattern = re.compile(r'(\d{4}-\d{2}-\d{2})\|(\d{1,2})\|(\d{1,2})\|(\d{1,3})\|(\d{1,3})\|(\D+)\n') result = pattern.findall(text) # 数据整理 data = pd.DataFrame(result, columns=['日期', '最高温度', '最低温度', '空气质量指数', '风力等级', '天气']) data[['最高温度', '最低温度', '空气质量指数', '风力等级']] = data[['最高温度', '最低温度', '空气质量指数', '风力等级']].astype(int) data['日期'] = pd.to_datetime(data['日期']) # 可视化分析 # 统计天气情况 weather_count = data['天气'].value_counts() weather_count = weather_count[:10] # 分词统计 seg_list = jieba.cut(' '.join(data['天气'].tolist())) words = {} for word in seg_list: if len(word) < 2: continue if word in words: words[word] += 1 else: words[word] = 1 # 绘制柱状图和词云图 plt.figure(figsize=(10, 5)) plt.bar(weather_count.index, weather_count.values) plt.title(f'{city}{year}年第{quarter}季度天气情况') plt.xlabel('天气') plt.ylabel('次数') plt.savefig('weather_bar.png') wordcloud = pd.DataFrame(list(words.items()), columns=['word', 'count']) mask_image = imageio.imread('cloud_mask.png') wordcloud.plot(kind='scatter', x='count', y='count', alpha=0.5, s=300, cmap='Reds', figsize=(10, 5)) for i in range(len(wordcloud)): plt.text(wordcloud.iloc[i]['count'], wordcloud.iloc[i]['count'], wordcloud.iloc[i]['word'], ha='center', va='center', fontproperties='SimHei') plt.axis('off') plt.imshow(mask_image, cmap=plt.cm.gray, interpolation='bilinear') plt.savefig('weather_wordcloud.png')这个python代码有错误,请改正以使该代码运行成功

import pandas as pd data = pd.read_csv('DATAA (1).txt', delimiter='\t') t = data.iloc[:, 0] x = data.iloc[:, 1] # 接下来的代码和之前一样 import numpy as np import matplotlib.pyplot as plt from scipy.optimize import curve_fit #position plt.close('all') data=np.loadtxt('DATAA (1).txt',delimiter=',') t=data[:,0] x=data[:,1] t = t[130:790] x = x[130:790] plt.figure() plt.plot(t,x) plt.xlabel('time') plt.ylabel('position') max_val=max(x) max_i=list(x).index(max_val) #position up plt.figure() t_up=t[:max_i] x_up=x[:max_i] plt.plot(t_up,x_up,'r*') def fit1(t,v0,a1,x0): return x0+v0*t+0.5*a1*t**2 popt,pcov = curve_fit(fit1, t_up, x_up) plt.plot(t_up, fit1(t_up,*popt),'k', linewidth=2) #position down plt.figure() t_down=t[max_i:] x_down=x[max_i:] plt.plot(t_down,x_down,'r*') popt,pcov = curve_fit(fit1, t_down, x_down) plt.plot(t_down, fit1(t_down,*popt),'k', linewidth=2) #velocity n1=20 data=[] delta=t[1]-t[0] for i in range (n1,len(t)-n1): deri=(x[i+n1]-x[i-n1])/(2*n1*delta) data.append(deri) v=np.array(data) t= t[n1:-n1] plt.figure() plt.plot(t,v,'r*') #velocity up plt.figure() t_up=t[:max_i-n1] v_up=v[:max_i-n1] plt.plot(t_up,v_up,'r*') def fit2(t,v0,a): return v0+a*t popt,pcov = curve_fit(fit2, t_up, v_up) plt.plot(t_up, fit2(t_up,*popt),'k', linewidth=2) #velocity down plt.figure() t_down=t[max_i-n1:] v_down=v[max_i-n1:] plt.plot(t_down,v_down,'r*') popt,pcov = curve_fit(fit2, t_down, v_down) plt.plot(t_down, fit2(t_down,*popt),'k', linewidth=2) #acceleration n2=2 data2=[] for i in range (n2,len(v)-n2): deri=(v[i+n2]-v[i-n2])/(2*n2*delta) data2.append(deri) a=np.array(data2) t= t[n2:-n2] plt.figure() plt.plot(t,a,'r*') import statistics a_up_mean=statistics.mean(a[:max_i-n1-n2]) a_down_mean=statistics.mean(a[max_i-n1-n2:])。解决 ValueError: could not convert string to float: '0.008\t-1.2126E-4'问题

将这个代码修改为自适应序列采样的插值方法:import numpy as np import matplotlib.pyplot as plt def gen_data(x1, x2): y_sample = np.sin(np.pi * x1 / 2) + np.cos(np.pi * x1 / 3) y_all = np.sin(np.pi * x2 / 2) + np.cos(np.pi * x2 / 3) return y_sample, y_all def kernel_interpolation(y_sample, x1, sig): gaussian_kernel = lambda x, c, h: np.exp(-(x - x[c]) ** 2 / (2 * (h ** 2))) num = len(y_sample) w = np.zeros(num) int_matrix = np.asmatrix(np.zeros((num, num))) for i in range(num): int_matrix[i, :] = gaussian_kernel(x1, i, sig) w = int_matrix.I * np.asmatrix(y_sample).T return w def kernel_interpolation_rec(w, x1, x2, sig): gkernel = lambda x, xc, h: np.exp(-(x - xc) ** 2 / (2 * (h ** 2))) num = len(x2) y_rec = np.zeros(num) for i in range(num): for k in range(len(w)): y_rec[i] = y_rec[i] + w[k] * gkernel(x2[i], x1[k], sig) return y_rec if __name__ == '__main__': snum = 12 # control point数量 ratio =50 # 总数据点数量:snum*ratio sig = 2 # 核函数宽度 xs = -4 xe = 4 x1 = np.linspace(xs, xe, snum) x2 = np.linspace(xs, xe, (snum - 1) * ratio + 1) y_sample, y_all = gen_data(x1, x2) plt.figure(1) w = kernel_interpolation(y_sample, x1, sig) y_rec = kernel_interpolation_rec(w, x1, x2, sig) plt.plot(x2, y_rec, 'k') plt.plot(x2, y_all, 'r:') plt.ylabel('y') plt.xlabel('x') for i in range(len(x1)): plt.plot(x1[i], y_sample[i], 'go', markerfacecolor='none') plt.legend(labels=['reconstruction', 'original', 'control point'], loc='lower left') plt.title('kernel interpolation:$y=sin(\pi x/2)+cos(\pi x/3)$') plt.show()

最新推荐

recommend-type

(179979052)基于MATLAB车牌识别系统【带界面GUI】.zip

基于MATLAB车牌识别系统【带界面GUI】.zip。内容来源于网络分享,如有侵权请联系我删除。另外如果没有积分的同学需要下载,请私信我。
recommend-type

DG储能选址定容模型matlab 程序采用改进粒子群算法,考虑时序性得到分布式和储能的选址定容模型,程序运行可靠 这段程序是一个改进的粒子群算法,主要用于解决电力系统中的优化问题 下面我将对程序进行详

DG储能选址定容模型matlab 程序采用改进粒子群算法,考虑时序性得到分布式和储能的选址定容模型,程序运行可靠 这段程序是一个改进的粒子群算法,主要用于解决电力系统中的优化问题。下面我将对程序进行详细分析。 首先,程序开始时加载了一些数据文件,包括gfjl、fljl、fhjl1、cjgs和fhbl。这些文件可能包含了电力系统的各种参数和数据。 接下来是一些参数的设置,包括三种蓄电池的参数矩阵、迭代次数、种群大小、速度更新参数、惯性权重、储能动作策略和限制条件等。 然后,程序进行了一些初始化操作,包括初始化种群、速度和适应度等。 接下来是主要的迭代过程。程序使用粒子群算法的思想,通过更新粒子的位置和速度来寻找最优解。在每次迭代中,程序计算了每个粒子的适应度,并更新个体最佳位置和全局最佳位置。 在每次迭代中,程序还进行了一些额外的计算,如潮流计算、储能约束等。这些计算可能涉及到电力系统的潮流计算、功率平衡等知识点。 最后,程序输出了一些结果,包括最佳位置和适应度等。同时,程序还绘制了一些图形,如电压和损耗的变化等。 综上所述,这段程序主要是一个改进的粒子群算法,用于解决电力
recommend-type

Java毕业设计项目:校园二手交易网站开发指南

资源摘要信息:"Java是一种高性能、跨平台的面向对象编程语言,由Sun Microsystems(现为Oracle Corporation)的James Gosling等人在1995年推出。其设计理念是为了实现简单性、健壮性、可移植性、多线程以及动态性。Java的核心优势包括其跨平台特性,即“一次编写,到处运行”(Write Once, Run Anywhere),这得益于Java虚拟机(JVM)的存在,它提供了一个中介,使得Java程序能够在任何安装了相应JVM的设备上运行,无论操作系统如何。 Java是一种面向对象的编程语言,这意味着它支持面向对象编程(OOP)的三大特性:封装、继承和多态。封装使得代码模块化,提高了安全性;继承允许代码复用,简化了代码的复杂性;多态则增强了代码的灵活性和扩展性。 Java还具有内置的多线程支持能力,允许程序同时处理多个任务,这对于构建服务器端应用程序、网络应用程序等需要高并发处理能力的应用程序尤为重要。 自动内存管理,特别是垃圾回收机制,是Java的另一大特性。它自动回收不再使用的对象所占用的内存资源,这样程序员就无需手动管理内存,从而减轻了编程的负担,并减少了因内存泄漏而导致的错误和性能问题。 Java广泛应用于企业级应用开发、移动应用开发(尤其是Android平台)、大型系统开发等领域,并且有大量的开源库和框架支持,例如Spring、Hibernate、Struts等,这些都极大地提高了Java开发的效率和质量。 标签中提到的Java、毕业设计、课程设计和开发,意味着文件“毕业设计---社区(校园)二手交易网站.zip”中的内容可能涉及到Java语言的编程实践,可能是针对学生的课程设计或毕业设计项目,而开发则指出了这些内容的具体活动。 在文件名称列表中,“SJT-code”可能是指该压缩包中包含的是一个特定的项目代码,即社区(校园)二手交易网站的源代码。这类网站通常需要实现用户注册、登录、商品发布、浏览、交易、评价等功能,并且需要后端服务器支持,如数据库连接和事务处理等。考虑到Java的特性,网站的开发可能使用了Java Web技术栈,如Servlet、JSP、Spring Boot等,以及数据库技术,如MySQL或MongoDB等。"
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【MVC标准化:肌电信号处理的终极指南】:提升数据质量的10大关键步骤与工具

![MVC标准化](https://img-blog.csdn.net/20160221141956498) # 摘要 MVC标准化是肌电信号处理中确保数据质量的重要步骤,它对于提高测量结果的准确性和可重复性至关重要。本文首先介绍肌电信号的生理学原理和MVC标准化理论,阐述了数据质量的重要性及影响因素。随后,文章深入探讨了肌电信号预处理的各个环节,包括噪声识别与消除、信号放大与滤波技术、以及基线漂移的校正方法。在提升数据质量的关键步骤部分,本文详细描述了信号特征提取、MVC标准化的实施与评估,并讨论了数据质量评估与优化工具。最后,本文通过实验设计和案例分析,展示了MVC标准化在实践应用中的具
recommend-type

能否提供一个在R语言中执行Framingham数据集判别分析的详细和完整的代码示例?

当然可以。在R语言中,Framingham数据集是一个用于心血管疾病研究的经典数据集。以下是使用`ggfortify`包结合` factoextra`包进行判别分析的一个基本步骤: 首先,你需要安装所需的库,如果尚未安装,可以使用以下命令: ```r install.packages(c("ggfortify", "factoextra")) ``` 然后加载所需的数据集并做预处理。Framingham数据集通常存储在`MASS`包中,你可以通过下面的代码加载: ```r library(MASS) data(Framingham) ``` 接下来,我们假设你已经对数据进行了适当的清洗和转换
recommend-type

Blaseball Plus插件开发与构建教程

资源摘要信息:"Blaseball Plus" Blaseball Plus是一个与游戏Blaseball相关的扩展项目,该项目提供了一系列扩展和改进功能,以增强Blaseball游戏体验。在这个项目中,JavaScript被用作主要开发语言,通过在package.json文件中定义的脚本来完成构建任务。项目说明中提到了开发环境的要求,即在20.09版本上进行开发,并且提供了一个flake.nix文件来复制确切的构建环境。虽然Nix薄片是一项处于工作状态(WIP)的功能且尚未完全记录,但可能需要用户自行安装系统依赖项,其中列出了Node.js和纱(Yarn)的特定版本。 ### 知识点详细说明: #### 1. Blaseball游戏: Blaseball是一个虚构的棒球游戏,它在互联网社区中流行,其特点是独特的规则、随机事件和社区参与的元素。 #### 2. 扩展开发: Blaseball Plus是一个扩展,它可能是为在浏览器中运行的Blaseball游戏提供额外功能和改进的软件。扩展开发通常涉及编写额外的代码来增强现有软件的功能。 #### 3. JavaScript编程语言: JavaScript是一种高级的、解释执行的编程语言,被广泛用于网页和Web应用的客户端脚本编写,是开发Web扩展的关键技术之一。 #### 4. package.json文件: 这是Node.js项目的核心配置文件,用于声明项目的各种配置选项,包括项目名称、版本、依赖关系以及脚本命令等。 #### 5.构建脚本: 描述中提到的脚本,如`build:dev`、`build:prod:unsigned`和`build:prod:signed`,这些脚本用于自动化构建过程,可能包括编译、打包、签名等步骤。`yarn run`命令用于执行这些脚本。 #### 6. yarn包管理器: Yarn是一个快速、可靠和安全的依赖项管理工具,类似于npm(Node.js的包管理器)。它允许开发者和项目管理依赖项,通过简单的命令行界面可以轻松地安装和更新包。 #### 7. Node.js版本管理: 项目要求Node.js的具体版本,这里是14.9.0版本。管理特定的Node.js版本是重要的,因为在不同版本间可能会存在API变化或其他不兼容问题,这可能会影响扩展的构建和运行。 #### 8. 系统依赖项的安装: 文档提到可能需要用户手动安装系统依赖项,这在使用Nix薄片时尤其常见。Nix薄片(Nix flakes)是一个实验性的Nix特性,用于提供可复现的开发环境和构建设置。 #### 9. Web扩展的工件放置: 构建后的工件放置在`addon/web-ext-artifacts/`目录中,表明这可能是一个基于WebExtension的扩展项目。WebExtension是一种跨浏览器的扩展API,用于创建浏览器扩展。 #### 10. 扩展部署: 描述中提到了两种不同类型的构建版本:开发版(dev)和生产版(prod),其中生产版又分为未签名(unsigned)和已签名(signed)版本。这些不同的构建版本用于不同阶段的开发和发布。 通过这份文档,我们能够了解到Blaseball Plus项目的开发环境配置、构建脚本的使用、依赖管理工具的运用以及Web扩展的基本概念和部署流程。这些知识点对于理解JavaScript项目开发和扩展构建具有重要意义。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

【天线性能提升密籍】:深入探究均匀线阵方向图设计原则及案例分析

![均匀线阵方向图](https://img-blog.csdnimg.cn/img_convert/0080eea0ca4af421d2bc9c74b87376c4.webp?x-oss-process=image/format,png) # 摘要 本文深入探讨了均匀线阵天线的基础理论及其方向图设计,旨在提升天线系统的性能和应用效能。文章首先介绍了均匀线阵及方向图的基本概念,并阐述了方向图设计的理论基础,包括波束形成与主瓣及副瓣特性的控制。随后,论文通过设计软件工具的应用和实际天线系统调试方法,展示了方向图设计的实践技巧。文中还包含了一系列案例分析,以实证研究验证理论,并探讨了均匀线阵性能
recommend-type

C#怎么把图片存入名为当前日期的文件夹里

在C#中,你可以通过`System.IO`命名空间下的`Directory`和`File`类来创建并存储图片到包含当前日期的文件夹里。以下是一个简单的示例: ```csharp using System; using System.IO; public void SaveImageToTodayFolder(string imagePath, string imageName) { // 获取当前日期 DateTime currentDate = DateTime.Now; string folderPath = Path.Combine(Environment.C