import pandas as pd data = pd.read_csv('DATAA (1).txt', delimiter='\t') t = data.iloc[:, 0] x = data.iloc[:, 1] # 接下来的代码和之前一样 import numpy as np import matplotlib.pyplot as plt from scipy.optimize import curve_fit #position plt.close('all') data=np.loadtxt('DATAA (1).txt',delimiter=',') t=data[:,0] x=data[:,1] t = t[130:790] x = x[130:790] plt.figure() plt.plot(t,x) plt.xlabel('time') plt.ylabel('position') max_val=max(x) max_i=list(x).index(max_val) #position up plt.figure() t_up=t[:max_i] x_up=x[:max_i] plt.plot(t_up,x_up,'r*') def fit1(t,v0,a1,x0): return x0+v0*t+0.5*a1*t**2 popt,pcov = curve_fit(fit1, t_up, x_up) plt.plot(t_up, fit1(t_up,*popt),'k', linewidth=2) #position down plt.figure() t_down=t[max_i:] x_down=x[max_i:] plt.plot(t_down,x_down,'r*') popt,pcov = curve_fit(fit1, t_down, x_down) plt.plot(t_down, fit1(t_down,*popt),'k', linewidth=2) #velocity n1=20 data=[] delta=t[1]-t[0] for i in range (n1,len(t)-n1): deri=(x[i+n1]-x[i-n1])/(2*n1*delta) data.append(deri) v=np.array(data) t= t[n1:-n1] plt.figure() plt.plot(t,v,'r*') #velocity up plt.figure() t_up=t[:max_i-n1] v_up=v[:max_i-n1] plt.plot(t_up,v_up,'r*') def fit2(t,v0,a): return v0+a*t popt,pcov = curve_fit(fit2, t_up, v_up) plt.plot(t_up, fit2(t_up,*popt),'k', linewidth=2) #velocity down plt.figure() t_down=t[max_i-n1:] v_down=v[max_i-n1:] plt.plot(t_down,v_down,'r*') popt,pcov = curve_fit(fit2, t_down, v_down) plt.plot(t_down, fit2(t_down,*popt),'k', linewidth=2) #acceleration n2=2 data2=[] for i in range (n2,len(v)-n2): deri=(v[i+n2]-v[i-n2])/(2*n2*delta) data2.append(deri) a=np.array(data2) t= t[n2:-n2] plt.figure() plt.plot(t,a,'r*') import statistics a_up_mean=statistics.mean(a[:max_i-n1-n2]) a_down_mean=statistics.mean(a[max_i-n1-n2:])。解决 ValueError: could not convert string to float: '0.008\t-1.2126E-4'问题
时间: 2023-06-27 21:07:16 浏览: 196
利用pandas将非数值数据转换成数值的方式
这个错误通常是由于读入的数据格式不正确导致的,你的数据文件中可能包含了一些非数字字符。建议你检查一下数据文件,确保数据文件中只包含数字和分隔符,没有其他字符。如果文件中确实有其他字符,可以使用 Pandas 的 `replace` 函数将其替换为分隔符或空格。例如:
```
data = pd.read_csv('DATAA (1).txt', delimiter='\t')
data.replace('[^0-9.-]+', ' ', regex=True, inplace=True)
```
这个代码会将数据文件中除了数字、小数点和负号之外的所有字符都替换为空格。这样就可以确保数据文件中只包含数字和分隔符了。
阅读全文