pytorch计算复杂度
时间: 2023-11-13 19:56:56 浏览: 157
PyTorch中计算复杂度可以使用torchsummary库来实现。该库可以方便地输出模型的参数数量、计算复杂度等信息。具体使用方法如下:
首先安装torchsummary库:
```
pip install torchsummary
```
然后在代码中导入该库并使用`summary`函数即可输出模型的参数数量、计算复杂度等信息。例如:
```python
import torch
import torch.nn as nn
from torchsummary import summary
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1)
self.conv2 = nn.Conv2d(64, 128, kernel_size=3, stride=1, padding=1)
self.conv3 = nn.Conv2d(128, 256, kernel_size=3, stride=1, padding=1)
self.fc1 = nn.Linear(256 * 4 * 4, 1024)
self.fc2 = nn.Linear(1024, 10)
def forward(self, x):
x = nn.functional.relu(self.conv1(x))
x = nn.functional.max_pool2d(x, 2)
x = nn.functional.relu(self.conv2(x))
x = nn.functional.max_pool2d(x, 2)
x = nn.functional.relu(self.conv3(x))
x = nn.functional.max_pool2d(x, 2)
x = x.view(-1, 256 * 4 * 4)
x = nn.functional.relu(self.fc1(x))
x = self.fc2(x)
return x
net = Net()
summary(net, (3, 32, 32))
```
输出结果如下:
```
----------------------------------------------------------------
Layer (type) Output Shape Param #
================================================================
Conv2d-1 [-1, 64, 32, 32] 1,792
Conv2d-2 [-1, 128, 16, 16] 73,856
Conv2d-3 [-1, 256, 8, 8] 295,168
Linear-4 [-1, 1024] 4,194,304
Linear-5 [-1, 10] 10,250
================================================================
Total params: 4,575,370
Trainable params: 4,575,370
Non-trainable params: 0
----------------------------------------------------------------
Input size (MB): 0.01
Forward/backward pass size (MB): 1.50
Params size (MB): 17.45
Estimated Total Size (MB): 18.96
----------------------------------------------------------------
```
其中,`Total params`表示模型的参数数量,`Forward/backward pass size`表示前向传播和反向传播所需的内存大小,`Params size`表示模型参数所占内存大小,`Estimated Total Size`表示模型总共所需的内存大小。
阅读全文