VMD代码matlab
时间: 2024-01-10 19:03:24 浏览: 123
抱歉,我无法直接提供引用内容中的代码。但是,我可以为您提供一些关于VMD算法的介绍和示例代码。
VMD(Variational Mode Decomposition)是一种信号分解方法,用于将信号分解为多个模态成分。以下是一个简单的VMD算法的示例代码:
```matlab
function [U, omega, alpha] = VMD(signal, alpha, tau, K, DC)
% signal: 输入信号
% alpha: 控制模态成分的带宽
% tau: 控制正则化项的权重
% K: 模态成分的数量
% DC: 是否包含直流分量
N = length(signal);
signal_hat = signal; u_hat = zeros(N, K);
omega_hat = zeros(K, N);
alpha_hat = zeros(K, N);
for k = 1:K
u = zeros(N, 1);
omega = zeros(N, 1);
alpha = zeros(N, 1);
while norm(signal_hat - u - omega - alpha) / norm(signal_hat) > tau
u = TVD(signal_hat - omega - alpha, alpha);
omega = SVT(signal_hat - u - alpha, alpha / alpha_hat(k, :));
alpha = alpha + alpha_hat(k, :) .* (signal_hat - u - omega);
end
u_hat(:, k) = u;
omega_hat(k, :) = omega';
alpha_hat(k, :) = alpha';
if DC == 0
signal_hat = signal_hat - u;
elseif DC == 1
signal_hat = signal_hat - u - alpha;
end
end
U = u_hat;
omega = omega_hat;
alpha = alpha_hat;
end
function u = TVD(signal, alpha)
% TVD: Total Variation Denoising
% signal: 输入信号
% alpha: 控制正则化项的权重
N = length(signal);
u = zeros(N, 1);
for i = 2:N-1
u(i) = (signal(i-1) + signal(i+1) + alpha(i) * signal(i)) / (2 + alpha(i));
end
end
function omega = SVT(signal, alpha)
% SVT: Singular Value Thresholding
% signal: 输入信号
% alpha: 控制正则化项的权重
[U, S, V] = svd(signal);
S = max(S - alpha, 0);
omega = U * S * V';
end
```
这是一个简单的VMD算法的实现,其中包含了TVD(Total Variation Denoising)和SVT(Singular Value Thresholding)两个子函数。您可以根据需要进行调整和修改。
阅读全文