GA for TSP
时间: 2023-12-10 08:35:50 浏览: 78
遗传算法(GA)是一种元启发式算法,可以用于解决旅行商问题(TSP)。以下是GA解决TSP问题的基本步骤和Python实现:
1. GA基本概念与算法最简单的python实现
- 个体:TSP问题中,个体是指一条路径,即一组城市的访问顺序。
- 种群:由多个个体组成的集合。
- 适应度函数:用于评估个体的优劣程度,对于TSP问题,适应度函数可以是路径长度。
- 选择:根据适应度函数选择优秀的个体。
- 交叉:将两个个体的染色体进行交换,生成新的个体。
- 变异:对个体的染色体进行随机变换,生成新的个体。
- 迭代:重复进行选择、交叉、变异等操作,直到达到预设的迭代次数或找到最优解。
以下是一个简单的Python实现:
```python
import random
# 城市坐标
city_pos = [(60, 200), (180, 200), (80, 180), (140, 180), (20, 160),
(100, 160), (200, 160), (140, 140), (40, 120), (100, 120),
(180, 100), (60, 80), (120, 80), (180, 60), (20, 40),
(100, 40), (200, 40), (20, 20), (60, 20), (160, 20)]
# 计算两个城市之间的距离
def distance(city1, city2):
return ((city1[0] - city2[0]) ** 2 + (city1[1] - city2[1]) ** 2) ** 0.5
# 计算路径长度
def path_length(path):
length = 0
for i in range(len(path) - 1):
length += distance(city_pos[path[i]], city_pos[path[i+1]])
length += distance(city_pos[path[-1]], city_pos[path[0]])
return length
# 初始化种群
def init_population(pop_size, city_num):
population = []
for i in range(pop_size):
path = list(range(city_num))
random.shuffle(path)
population.append(path)
return population
# 选择
def selection(population, fitness):
idx1 = random.randint(0, len(population) - 1)
idx2 = random.randint(0, len(population) - 1)
if fitness[idx1] < fitness[idx2]:
return population[idx1]
else:
return population[idx2]
# 交叉
def crossover(parent1, parent2):
child = [-1] * len(parent1)
start = random.randint(0, len(parent1) - 1)
end = random.randint(0, len(parent1) - 1)
if start > end:
start, end = end, start
for i in range(start, end+1):
child[i] = parent1[i]
j = 0
for i in range(len(parent2)):
if child[j] == -1:
if parent2[i] not in child:
child[j] = parent2[i]
j += 1
if j == len(parent1):
break
return child
# 变异
def mutation(path):
idx1 = random.randint(0, len(path) - 1)
idx2 = random.randint(0, len(path) - 1)
path[idx1], path[idx2] = path[idx2], path[idx1]
return path
# GA算法
def GA_TSP(city_pos, pop_size, max_iter):
city_num = len(city_pos)
population = init_population(pop_size, city_num)
fitness = [1/path_length(path) for path in population]
best_path = population[fitness.index(max(fitness))]
for i in range(max_iter):
new_population = []
for j in range(pop_size):
parent1 = selection(population, fitness)
parent2 = selection(population, fitness)
child = crossover(parent1, parent2)
if random.random() < 0.1:
child = mutation(child)
new_population.append(child)
population = new_population
fitness = [1/path_length(path) for path in population]
if max(fitness) > 1/path_length(best_path):
best_path = population[fitness.index(max(fitness))]
return best_path
# 测试
best_path = GA_TSP(city_pos, 100, 500)
print('最短路径:', best_path)
print('路径长度:', path_length(best_path))
```
2. 对GA的思考和改进
2.1 GA改进思路
- 改进选择算子:可以使用轮盘赌选择、锦标赛选择等算子。
- 改进交叉算子:可以使用部分映射交叉、顺序交叉等算子。
- 改进变异算子:可以使用交换变异、插入变异等算子。
- 改进种群初始化:可以使用贪心算法、最近邻算法等方法生成初始种群。
2.2 GA优缺点
- 优点:可以在较短时间内找到较优解,适用于求解NP难问题。
- 缺点:容易陷入局部最优解,需要多次运行以增加找到全局最优解的概率。同时,算法的效率也受到种群大小、迭代次数等参数的影响。
阅读全文