"\"&_latitude=\\d{1,2}\\.\\d+"是什么意思
时间: 2023-07-24 17:15:02 浏览: 175
这个正则表达式 `\"&_latitude=\\d{1,2}\\.\\d+` 的含义是匹配以 "\"&_latitude=" 开头,后面跟着 1 或 2 位数字,然后是一个小数点,最后是至少一位数字。
具体解释如下:
- `\"&_latitude=` 匹配字符串中的 "\"&_latitude="。
- `\\d{1,2}` 匹配 1 或 2 位数字。`\\d` 表示匹配任意一个数字,`{1,2}` 表示匹配前面的元素(即数字)出现 1 到 2 次。
- `\\.` 匹配小数点。需要使用两个反斜杠来转义,表示匹配真正的小数点字符。
- `\\d+` 匹配至少一位数字。`\\d` 表示匹配任意一个数字,`+` 表示匹配前面的元素(即数字)出现至少一次。
所以这个正则表达式可以用于匹配符合格式要求的纬度(latitude)参数,例如:
- "\"&_latitude=12.34"
- "\"&_latitude=5.6789"
该正则表达式假定纬度参数是以 "\"&_latitude=" 开头的,并且后面的值符合纬度的格式要求。
请注意,这只是对纬度参数进行匹配,具体的使用场景和含义需要根据上下文来确定。
相关问题
data2 = xr.open_dataset(file_path)[target_var].loc['1962-01-01':'2014-12-12', :, :] data = data2.loc[data2.time.dt.month.isin([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12])].resample(time='Y').mean(dim='time').values#.mean(dim=['time']).values data1 = data.flatten() # print(data1.shape) model[i] = data1 # print(model[i].shape) data_spring = data2.loc[data2.time.dt.month.isin([3, 4, 5])].resample(time='Y').mean(dim='time').values#.mean(dim=['time']).values data1_spring = data_spring.flatten() print(model_spring[i].shape) print(data1_spring.shape) model_spring[i] = data1_spring data_summer = data2.loc[data2.time.dt.month.isin([6, 7, 8])].resample(time='Y').mean(dim='time').values#.mean(dim=['time']).values data1_summer = data_summer.flatten() model_summer[i] = data1_summer data_autumn = data2.loc[data2.time.dt.month.isin([9, 10, 11])].resample(time='Y').mean(dim='time').values#.mean(dim=['time']).values data1_autumn = data_autumn.flatten() model_autumn[i] = data1_autumn data_winter = data2.loc[data2.time.dt.month.isin([12, 1, 2])].resample(time='Y').mean(dim='time').values#.mean(dim=['time']).values data1_winter = data_winter.flatten() model_winter[i] = data1_winter i = i + 1这样读取速度太慢了,可不可以帮我优化一下
可以考虑以下优化:
1. 读取数据时可以使用延迟加载的方式,即设置 `chunks` 参数,将数据分块读取,可以减少一次性加载数据占用的内存和读取时间。
2. 通过向量化操作,直接将 `data1_spring`, `data1_summer`, `data1_autumn`, `data1_winter` 合并成一个二维数组,然后使用切片操作将其赋值给 `model_spring`, `model_summer`, `model_autumn`, `model_winter`,这样可以减少循环赋值的时间。
下面是优化后的代码:
```
data2 = xr.open_dataset(file_path)[target_var].loc['1962-01-01':'2014-12-12', :, :]
data = data2.loc[data2.time.dt.month.isin([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12])].resample(time='Y').mean(dim='time').chunk({'latitude': 50, 'longitude': 50, 'time': -1})
data_spring = data2.loc[data2.time.dt.month.isin([3, 4, 5])].resample(time='Y').mean(dim='time').chunk({'latitude': 50, 'longitude': 50, 'time': -1})
data_summer = data2.loc[data2.time.dt.month.isin([6, 7, 8])].resample(time='Y').mean(dim='time').chunk({'latitude': 50, 'longitude': 50, 'time': -1})
data_autumn = data2.loc[data2.time.dt.month.isin([9, 10, 11])].resample(time='Y').mean(dim='time').chunk({'latitude': 50, 'longitude': 50, 'time': -1})
data_winter = data2.loc[data2.time.dt.month.isin([12, 1, 2])].resample(time='Y').mean(dim='time').chunk({'latitude': 50, 'longitude': 50, 'time': -1})
model = np.zeros((len(files), data.size), dtype='float32')
model_spring = np.zeros((len(files), data_spring.size), dtype='float32')
model_summer = np.zeros((len(files), data_summer.size), dtype='float32')
model_autumn = np.zeros((len(files), data_autumn.size), dtype='float32')
model_winter = np.zeros((len(files), data_winter.size), dtype='float32')
i = 0
for d, s, su, a, w in zip(data, data_spring, data_summer, data_autumn, data_winter):
data1 = d.values.flatten()
data1_spring = s.values.flatten()
data1_summer = su.values.flatten()
data1_autumn = a.values.flatten()
data1_winter = w.values.flatten()
model[i] = data1
model_spring[i:i+len(data1_spring)] = data1_spring.reshape(-1, data_spring.shape[1])
model_summer[i:i+len(data1_summer)] = data1_summer.reshape(-1, data_summer.shape[1])
model_autumn[i:i+len(data1_autumn)] = data1_autumn.reshape(-1, data_autumn.shape[1])
model_winter[i:i+len(data1_winter)] = data1_winter.reshape(-1, data_winter.shape[1])
i += 1
```
import time, sys from datetime import datetime, timedelta from netCDF4 import Dataset, date2num, num2date import numpy as np day = 20170101 d = datetime.strptime(str(day), '%Y%m%d') f_in = 'tp_%d-%s.nc' % (day, (d + timedelta(days = 1)).strftime('%Y%m%d')) f_out = 'daily-tp_%d.nc' % day time_needed = [] for i in range(1, 25): time_needed.append(d + timedelta(hours = i)) with Dataset(f_in) as ds_src: var_time = ds_src.variables['time'] time_avail = num2date(var_time[:], var_time.units, calendar = var_time.calendar) indices = [] for tm in time_needed: a = np.where(time_avail == tm)[0] if len(a) == 0: sys.stderr.write('Error: precipitation data is missing/incomplete - %s!\n' % tm.strftime('%Y%m%d %H:%M:%S')) sys.exit(200) else: print('Found %s' % tm.strftime('%Y%m%d %H:%M:%S')) indices.append(a[0]) var_tp = ds_src.variables['tp'] tp_values_set = False for idx in indices: if not tp_values_set: data = var_tp[idx, :, :] tp_values_set = True else: data += var_tp[idx, :, :] with Dataset(f_out, mode = 'w', format = 'NETCDF3_64BIT_OFFSET') as ds_dest: # Dimensions for name in ['latitude', 'longitude']: dim_src = ds_src.dimensions[name] ds_dest.createDimension(name, dim_src.size) var_src = ds_src.variables[name] var_dest = ds_dest.createVariable(name, var_src.datatype, (name,)) var_dest[:] = var_src[:] var_dest.setncattr('units', var_src.units) var_dest.setncattr('long_name', var_src.long_name) ds_dest.createDimension('time', None) var = ds_dest.createVariable('time', np.int32, ('time',)) time_units = 'hours since 1900-01-01 00:00:00' time_cal = 'gregorian' var[:] = date2num([d], units = time_units, calendar = time_cal) var.setncattr('units', time_units) var.setncattr('long_name', 'time') var.setncattr('calendar', time_cal) # Variables var = ds_dest.createVariable(var_tp.name, np.double, var_tp.dimensions) var[0, :, :] = data var.setncattr('units', var_tp.units) var.setncattr('long_name', var_tp.long_name) # Attributes ds_dest.setncattr('Conventions', 'CF-1.6') ds_dest.setncattr('history', '%s %s' % (datetime.now().strftime('%Y-%m-%d %H:%M:%S'), ' '.join(time.tzname))) print('Done! Daily total precipitation saved in %s' % f_out)
null是一个表示空值或缺失值的特殊数据类型。在程序中,当一个变量的值为空时,通常会被赋予null值。null与undefined不同,undefined通常表示变量未被定义或未初始化,而null表示该变量的值为空。在许多编程语言中,null也可以被认为是一个对象,它没有任何属性。
阅读全文