小瓜所住的社区各个年龄段的人都有不少,今天小瓜突发奇想,认为如果一个人的年龄恰好是另外两个人的年龄之和,则这个人的年龄就称为美妙的年龄。 已知社区一共有 � n个人,且知道每个人的年龄,现在你来帮小瓜算一算,有多少个美妙的年龄吧!

时间: 2024-04-16 08:28:23 浏览: 228
要计算有多少个美妙的年龄,可以使用双重循环遍历社区中的每对人员年龄,然后检查是否存在一个人的年龄恰好是另外两个人的年龄之和。以下是一个示例的伪代码: ``` count = 0 for i = 1 to n: for j = i+1 to n: for k = j+1 to n: if (age[i] == age[j] + age[k]) or (age[j] == age[i] + age[k]) or (age[k] == age[i] + age[j]): count = count + 1 返回 count ``` 在这段代码中,`age` 是一个包含社区中每个人的年龄的数组。我们使用三重循环遍历每对人员的年龄,并检查是否存在美妙的年龄。如果找到了美妙的年龄,则计数器 `count` 增加。最后返回 `count` 的值即可得到美妙的年龄个数。 请注意,这只是一个示例的伪代码,实际实现可能需要根据具体编程语言进行调整。
相关问题

消消乐是一个非常流行的手机游戏。现在游戏创意设计师Jerry突发奇想设计一个如下图所示的一维消消乐游戏,Jerry想知道游戏生成的小球布局在玩家玩的过程中最高总分能得多少,现在Jerry向资深的程序员你求助,希望你能帮助他算出每个游戏初局的最高得分。游戏规则是这样的:如上图所示所有的小球都布局在一行上,每个小球都有自己的颜色,连续摆放的同颜色小球构成一个小球片段,上图中共有14个小球片段,每个小球片段分别有:5、2、1、2、1、1、1、2、1、1、1、1、1、1个小球片段,玩家每次点击一个小球,则该小球所在的小球片段就会消失。若消失的小球片段中共有m个小球,则玩家获得m*m个积分。请问:给定游戏开始时的状态,玩家可获得的最高积分是多少?所以说如果你不好好学习,游戏都玩不好! 特别说明:本题目改编自POJ上的一个题目,在此特向原作者致敬,致谢! 输入格式: 第一行是一个整数n(1<=n<=15),表示共有n组测试数据。 接下来每组测试数据共包括两行: (1)第1行是一个整数k(1<=k<=200),表示共有k个小球; (2)第2行包含k个正整数,表示每个小球的颜色这些整数的取值范围是[1,n]。

好的,我知道了。这是一个经典的动态规划问题,可以使用记忆化搜索或者状态转移方程来解决。我可以给你提供一个基于状态转移方程的解法。 定义dp[i][j]表示将第i~j个小球消除所能获得的最高得分,则状态转移方程为: dp[i][j] = max(dp[i][k-1] + dp[k+1][j] + (cnt[i][k-1]+cnt[k+1][j])^2),其中i<=k<=j 其中,cnt[i][j]表示将第i~j个小球消除所得的积分。 最终答案为dp[1][k]。 具体实现时,可以从小球个数为1的情况开始,逐步递增,直到求解出dp[1][k]为止。 需要注意的是,由于本题数据范围较小,可以使用二维数组来存储dp值。如果数据量较大,可以使用滚动数组或者空间压缩来优化空间复杂度。

c语言求以下问题:小 x 有n颗糖果,现在他要把它们分成好多堆。 小 x 突发奇想,想让后面每一堆糖果都比上一堆多。 小 x 想知道她最多能分出几堆糖果,你能帮帮她吗?

这是一个经典的动态规划问题,通常称为“吃糖果问题”或“斐波那契堆”。可以用一个数组来存储每一步可以达到的最大堆数。设 `dp[i]` 表示前 `i` 颗糖果能分成的最大堆数,那么状态转移方程为: 1. 如果第 `i` 颗糖果单独成一堆,那么就是 `dp[i - 1] + 1`; 2. 否则,第 `i` 颗糖果需要加入到之前某一堆中,此时最大堆数不会超过 `dp[j]` 对于所有 `j < i` 的值。 初始条件是 `dp[0] = 1`,因为一颗糖果本身就是一堆。算法的主要步骤是从前往后遍历,更新每个位置的 `dp` 值。 最后,`dp[n]` 就是小 x 能分出的最多堆数。 如果你想要编写具体的 C 语言代码来解决这个问题,我会建议使用循环而不是递归,因为这个问题非常适合迭代的方式来处理。以下是简单的伪代码示例: ```c int maxHeap(int candies[], int n) { if (n <= 0) return 0; int dp[n]; dp[0] = 1; for (int i = 1; i < n; i++) { dp[i] = 1; // 初始化为1,假设每颗都是独立一堆 for (int j = 0; j < i; j++) { if (candies[i] > candies[j]) { dp[i] = max(dp[i], dp[j] + 1); } } } return dp[n - 1]; // 返回最后一堆能包含的最大糖果数 } ```
阅读全文

相关推荐

最新推荐

recommend-type

基于OpenCV的人脸识别小程序.zip

【项目资源】: 包含前端、后端、移动开发、操作系统、人工智能、物联网、信息化管理、数据库、硬件开发、大数据、课程资源、音视频、网站开发等各种技术项目的源码。 包括STM32、ESP8266、PHP、QT、Linux、iOS、C++、Java、python、web、C#、EDA、proteus、RTOS等项目的源码。 【项目质量】: 所有源码都经过严格测试,可以直接运行。 功能在确认正常工作后才上传。 【适用人群】: 适用于希望学习不同技术领域的小白或进阶学习者。 可作为毕设项目、课程设计、大作业、工程实训或初期项目立项。 【附加价值】: 项目具有较高的学习借鉴价值,也可直接拿来修改复刻。 对于有一定基础或热衷于研究的人来说,可以在这些基础代码上进行修改和扩展,实现其他功能。 【沟通交流】: 有任何使用上的问题,欢迎随时与博主沟通,博主会及时解答。 鼓励下载和使用,并欢迎大家互相学习,共同进步。。内容来源于网络分享,如有侵权请联系我删除。另外如果没有积分的同学需要下载,请私信我。
recommend-type

精选毕设项目-宅男社区.zip

精选毕设项目-宅男社区
recommend-type

精选毕设项目-扫描条形码.zip

精选毕设项目-扫描条形码
recommend-type

配网两阶段鲁棒优化调度模型 关键词:两阶段鲁棒优化,CCG算法,储能 仿真算例采用33节点,采用matlab+yalmip+cplex编写,两阶段模型采用CCG算法求解 模型中一阶段变量主要包括01

配网两阶段鲁棒优化调度模型 关键词:两阶段鲁棒优化,CCG算法,储能 仿真算例采用33节点,采用matlab+yalmip+cplex编写,两阶段模型采用CCG算法求解。 模型中一阶段变量主要包括01变量和无功优化变量,核心变量主要存在于二阶段,因此在叠加二阶段变量优化过程中更容易得到最优解,所以有限次迭代即得到收敛的结果。 模型以网损为目标,包括功率平衡、网络潮流、电压电流、蓄电池出力以及无功设备出力等约束。 复现《两阶段鲁棒优化的主动配电网动态无功优化》-熊壮壮,具体内容可自行下载了解。
recommend-type

comsol光栅仿真 计算复合波导光栅准BIC增强古斯汉森位移

comsol光栅仿真 计算复合波导光栅准BIC增强古斯汉森位移
recommend-type

免安装JDK 1.8.0_241:即刻配置环境运行

资源摘要信息:"JDK 1.8.0_241 是Java开发工具包(Java Development Kit)的版本号,代表了Java软件开发环境的一个特定发布。它由甲骨文公司(Oracle Corporation)维护,是Java SE(Java Platform, Standard Edition)的一部分,主要用于开发和部署桌面、服务器以及嵌入式环境中的Java应用程序。本版本是JDK 1.8的更新版本,其中的241代表在该版本系列中的具体更新编号。此版本附带了Java源码,方便开发者查看和学习Java内部实现机制。由于是免安装版本,因此不需要复杂的安装过程,解压缩即可使用。用户配置好环境变量之后,即可以开始运行和开发Java程序。" 知识点详细说明: 1. JDK(Java Development Kit):JDK是进行Java编程和开发时所必需的一组工具集合。它包含了Java运行时环境(JRE)、编译器(javac)、调试器以及其他工具,如Java文档生成器(javadoc)和打包工具(jar)。JDK允许开发者创建Java应用程序、小程序以及可以部署在任何平台上的Java组件。 2. Java SE(Java Platform, Standard Edition):Java SE是Java平台的标准版本,它定义了Java编程语言的核心功能和库。Java SE是构建Java EE(企业版)和Java ME(微型版)的基础。Java SE提供了多种Java类库和API,包括集合框架、Java虚拟机(JVM)、网络编程、多线程、IO、数据库连接(JDBC)等。 3. 免安装版:通常情况下,JDK需要进行安装才能使用。但免安装版JDK仅需要解压缩到磁盘上的某个目录,不需要进行安装程序中的任何步骤。用户只需要配置好环境变量(主要是PATH、JAVA_HOME等),就可以直接使用命令行工具来运行Java程序或编译代码。 4. 源码:在软件开发领域,源码指的是程序的原始代码,它是由程序员编写的可读文本,通常是高级编程语言如Java、C++等的代码。本压缩包附带的源码允许开发者阅读和研究Java类库是如何实现的,有助于深入理解Java语言的内部工作原理。源码对于学习、调试和扩展Java平台是非常有价值的资源。 5. 环境变量配置:环境变量是操作系统中用于控制程序执行环境的参数。在JDK中,常见的环境变量包括JAVA_HOME和PATH。JAVA_HOME是JDK安装目录的路径,配置此变量可以让操作系统识别到JDK的位置。PATH变量则用于指定系统命令查找的路径,将JDK的bin目录添加到PATH后,就可以在命令行中的任何目录下执行JDK中的命令,如javac和java。 在实际开发中,了解并正确配置JDK对于Java开发者来说是一个基础且重要的环节。掌握如何安装和配置JDK,以及如何理解JDK中的源码和各种工具,对于进行Java编程和解决问题至关重要。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【提升效率与稳定性】:深入掌握单相整流器的控制策略

# 摘要 单相整流器作为电力电子技术的基础设备,广泛应用于电力系统和工业自动化领域。本文首先概述了单相整流器的基本概念,详细分析了其工作原理,包括电力电子器件的角色、数学模型以及控制策略。随后,针对控制技术进行了深入探讨,包括传统控制技术如PID控制和高级控制策略如模糊逻辑控制及自适应控制的应用。进一步地,本文提出了一系列提升单相整流器性能的方法,如效率提升策略、系统稳定性措施,以及性能评估与优化方案。最后,文章探讨了单相整流器在不同领域的应用案例,并对新兴技术与市场趋势进行了展望。 # 关键字 单相整流器;电力电子器件;数学模型;控制策略;性能提升;应用案例 参考资源链接:[单相PWM整
recommend-type

你看这是ashx映射的cs文件初始代码,你看这里边根本就没有写对action参数进行任何操作但你.ashx?action=submit这样去做他就能返回出数据这是为什么

在ASP.NET中,.ashx文件(也称为HTTP处理程序)用于处理HTTP请求并返回响应。即使在初始代码中没有对action参数进行任何操作,系统仍然可以通过默认的ProcessRequest方法处理请求并返回数据。 当你在URL中传递参数(如?action=submit)时,这些参数会被包含在请求的查询字符串中。虽然你的代码没有显式地处理这些参数,但默认的ProcessRequest方法会接收这些参数并执行一些默认操作。 以下是一个简单的.ashx文件示例: ```csharp <%@ WebHandler Language="C#" Class="MyHandler" %> us
recommend-type

机器学习预测葡萄酒评分:二值化品尝笔记的应用

资源摘要信息:"wine_reviewer:使用机器学习基于二值化的品尝笔记来预测葡萄酒评论分数" 在当今这个信息爆炸的时代,机器学习技术已经被广泛地应用于各个领域,其中包括食品和饮料行业的质量评估。在本案例中,将探讨一个名为wine_reviewer的项目,该项目的目标是利用机器学习模型,基于二值化的品尝笔记数据来预测葡萄酒评论的分数。这个项目不仅对于葡萄酒爱好者具有极大的吸引力,同时也为数据分析和机器学习的研究人员提供了实践案例。 首先,要理解的关键词是“机器学习”。机器学习是人工智能的一个分支,它让计算机系统能够通过经验自动地改进性能,而无需人类进行明确的编程。在葡萄酒评分预测的场景中,机器学习算法将从大量的葡萄酒品尝笔记数据中学习,发现笔记与葡萄酒最终评分之间的相关性,并利用这种相关性对新的品尝笔记进行评分预测。 接下来是“二值化”处理。在机器学习中,数据预处理是一个重要的步骤,它直接影响模型的性能。二值化是指将数值型数据转换为二进制形式(0和1)的过程,这通常用于简化模型的计算复杂度,或者是数据分类问题中的一种技术。在葡萄酒品尝笔记的上下文中,二值化可能涉及将每种口感、香气和外观等属性的存在与否标记为1(存在)或0(不存在)。这种方法有利于将文本数据转换为机器学习模型可以处理的格式。 葡萄酒评论分数是葡萄酒评估的量化指标,通常由品酒师根据酒的品质、口感、香气、外观等进行评分。在这个项目中,葡萄酒的品尝笔记将被用作特征,而品酒师给出的分数则是目标变量,模型的任务是找出两者之间的关系,并对新的品尝笔记进行分数预测。 在机器学习中,通常会使用多种算法来构建预测模型,如线性回归、决策树、随机森林、梯度提升机等。在wine_reviewer项目中,可能会尝试多种算法,并通过交叉验证等技术来评估模型的性能,最终选择最适合这个任务的模型。 对于这个项目来说,数据集的质量和特征工程将直接影响模型的准确性和可靠性。在准备数据时,可能需要进行数据清洗、缺失值处理、文本规范化、特征选择等步骤。数据集中的标签(目标变量)即为葡萄酒的评分,而特征则来自于品酒师的品尝笔记。 项目还提到了“kaggle”和“R”,这两个都是数据分析和机器学习领域中常见的元素。Kaggle是一个全球性的数据科学竞赛平台,提供各种机器学习挑战和数据集,吸引了来自全球的数据科学家和机器学习专家。通过参与Kaggle竞赛,可以提升个人技能,并有机会接触到最新的机器学习技术和数据处理方法。R是一种用于统计计算和图形的编程语言和软件环境,它在统计分析、数据挖掘、机器学习等领域有广泛的应用。使用R语言可以帮助研究人员进行数据处理、统计分析和模型建立。 至于“压缩包子文件的文件名称列表”,这里可能存在误解或打字错误。通常,这类名称应该表示存储项目相关文件的压缩包,例如“wine_reviewer-master.zip”。这个压缩包可能包含了项目的源代码、数据集、文档和其它相关资源。在开始项目前,研究人员需要解压这个文件包,并且仔细阅读项目文档,以便了解项目的具体要求和数据格式。 总之,wine_reviewer项目是一个结合了机器学习、数据处理和葡萄酒品鉴的有趣尝试,它不仅展示了机器学习在实际生活中的应用潜力,也为研究者提供了丰富的学习资源和实践机会。通过这种跨领域的合作,可以为葡萄酒行业带来更客观、一致的评价标准,并帮助消费者做出更加明智的选择。