神经网络自适应控制算法

时间: 2024-04-24 22:20:30 浏览: 24
神经网络自适应控制算法是一种基于神经网络的控制方法,它通过学习和适应系统的动态特性来实现控制目标。下面是神经网络自适应控制算法的介绍: 1. 反向传播算法:反向传播算法是一种常用的神经网络训练算法,它通过计算误差并将误差从输出层向输入层反向传播,来更新神经网络的权重和偏置,从而实现对系统的自适应控制。 2. 自适应神经网络控制器:自适应神经网络控制器是一种基于神经网络的控制器,它通过学习系统的输入和输出数据,自动调整神经网络的参数,以实现对系统的自适应控制。常见的自适应神经网络控制器包括基于模型参考自适应控制(MRAC)和基于误差反向传播的自适应控制(BPAC)等。 3. 强化学习算法:强化学习算法是一种通过试错学习来优化控制策略的方法。在神经网络自适应控制中,可以使用强化学习算法来训练神经网络控制器,使其能够根据系统的反馈信息来调整控制策略,以实现更好的控制效果。
相关问题

二关节机器人运动系统建模及神经网络自适应控制算法matlab代码

以下是一个二关节机器人运动系统建模及神经网络自适应控制算法的MATLAB代码示例,供您参考: ```matlab clear all; close all; clc; % 定义机器人参数 m1 = 1; % 关节1的质量 m2 = 1; % 关节2的质量 l1 = 1; % 关节1的长度 l2 = 1; % 关节2的长度 g = 9.8; % 重力加速度 % 定义神经网络参数 n = 10; % 神经元数量 alpha = 0.1; % 学习速率 epochs = 300; % 迭代次数 % 定义初始位置和速度 q0 = [0, 0]; dq0 = [0, 0]; % 定义目标轨迹 t = 0:0.01:5; q_d = [0.5*sin(t); 0.5*cos(t)]; % 定义初始权重和阈值 W1 = rand(n, 2); W2 = rand(2, n); b1 = rand(n, 1); b2 = rand(2, 1); % 神经网络自适应控制 for i = 1:epochs for j = 1:length(t) % 计算误差 q = forward_kinematics(q0, l1, l2); e = q_d(:,j) - q(:,2); % 计算神经网络输出 [y1, y2] = neural_network(q0, dq0, W1, W2, b1, b2); % 计算反向传播误差 delta2 = -e; delta1 = W2'*delta2.*tanh_derivative(y1); % 更新权重和阈值 W2 = W2 - alpha*delta2*y1'; b2 = b2 - alpha*delta2; W1 = W1 - alpha*delta1*[q0; dq0]'; b1 = b1 - alpha*delta1; % 更新状态 [q0, dq0] = update_state(q0, dq0, g, m1, m2, l1, l2, y2); end end % 动态仿真 for i = 1:length(t) q = forward_kinematics(q0, l1, l2); plot_robot(q, l1, l2, q_d(:,i)); pause(0.01); end % 正向运动学函数 function q = forward_kinematics(q0, l1, l2) q1 = q0(1); q2 = q0(2); x1 = l1*cos(q1); y1 = l1*sin(q1); x2 = x1 + l2*cos(q1+q2); y2 = y1 + l2*sin(q1+q2); q = [q1, q1+q2; x1, x2; y1, y2]; end % 神经网络函数 function [y1, y2] = neural_network(q, dq, W1, W2, b1, b2) x = [q; dq]; y1 = tanh(W1*x + b1); y2 = W2*y1 + b2; end % 反双曲正切函数 function y = tanh_derivative(x) y = sech(x).^2; end % 状态更新函数 function [q, dq] = update_state(q0, dq0, g, m1, m2, l1, l2, u) q1 = q0(1); q2 = q0(2); dq1 = dq0(1); dq2 = dq0(2); H11 = m1*l1^2 + m2*(l1^2+2*l1*l2*cos(q2)+l2^2); H12 = m2*(l1*l2*cos(q2)+l2^2); H21 = H12; H22 = m2*l2^2; C1 = -m2*l1*l2*sin(q2)*(2*dq1*dq2+dq2^2); C2 = m2*l1*l2*sin(q2)*dq1^2; G1 = (m1+m2)*g*l1*sin(q1) + m2*g*l2*sin(q1+q2); G2 = m2*g*l2*sin(q1+q2); H = [H11, H12; H21, H22]; C = [C1; C2]; G = [G1; G2]; qdd = H\(-C-G+u); dq = dq0 + qdd'; q = q0 + dq*0.01; end % 机器人绘图函数 function plot_robot(q, l1, l2, q_d) q1 = q(1,2); q2 = q(2,2) - q(1,2); x1 = l1*cos(q1); y1 = l1*sin(q1); x2 = x1 + l2*cos(q1+q2); y2 = y1 + l2*sin(q1+q2); plot([0,x1,x2],[0,y1,y2],'b-o','LineWidth',2); hold on; plot(q_d(1),q_d(2),'r*','MarkerSize',10); axis equal; axis([-2 2 -2 2]); hold off; end ``` 需要注意的是,这只是一个简单的示例代码,仅供参考。如果您有更具体的要求或问题,请告诉我,我会尽力为您提供帮助。

二关节机器人运动系统建模及神经网络自适应控制,采用matlab环境实现,系统建模及神经网络自适应控制算法, 给出matlab代码

对于二关节机器人运动系统的建模和控制,一般可以采用以下步骤: 1. 确定机器人系统的动力学模型,包括质量、惯性、摩擦等参数。 2. 建立控制器模型,可以采用传统的 PID 控制器或者神经网络控制器。 3. 进行系统模拟和仿真,通过调整控制器参数,得到最优的控制效果。 下面是一个基于神经网络的自适应控制器的示例代码,其中采用了 Matlab 神经网络工具箱中的神经网络函数: ``` % 二关节机器人运动系统建模及神经网络自适应控制 % 系统参数 m1 = 1; % 关节1质量 m2 = 1; % 关节2质量 l1 = 1; % 关节1长度 l2 = 1; % 关节2长度 g = 9.8; % 重力加速度 % 神经网络参数 n = 10; % 隐藏层神经元个数 eta = 0.01; % 学习率 % 数据初始化 q1 = 0; % 关节1初始位置 q2 = 0; % 关节2初始位置 dq1 = 0; % 关节1初始速度 dq2 = 0; % 关节2初始速度 ddq1 = 0; % 关节1初始加速度 ddq2 = 0; % 关节2初始加速度 tau1 = 0; % 关节1初始力矩 tau2 = 0; % 关节2初始力矩 t = 0; % 时间初始值 dt = 0.01; % 时间步长 T = 10; % 总仿真时间 % 建立神经网络 net = feedforwardnet(n, 'trainlm'); net.layers{2}.transferFcn = 'purelin'; net.trainParam.lr = eta; net.trainParam.epochs = 1000; net.trainParam.goal = 1e-5; % 数据存储 q1_data = zeros(1, T/dt); q2_data = zeros(1, T/dt); tau1_data = zeros(1, T/dt); tau2_data = zeros(1, T/dt); % 仿真循环 for i = 1:T/dt % 计算系统状态 [ddq1, ddq2] = robot_dynamics(q1, q2, dq1, dq2, tau1, tau2, m1, m2, l1, l2, g); q1 = q1 + dq1 * dt + 0.5 * ddq1 * dt^2; q2 = q2 + dq2 * dt + 0.5 * ddq2 * dt^2; dq1 = dq1 + ddq1 * dt; dq2 = dq2 + ddq2 * dt; % 计算控制力矩 tau1 = robot_control(q1, q2, dq1, dq2, net); tau2 = 0; % 存储数据 q1_data(i) = q1; q2_data(i) = q2; tau1_data(i) = tau1; tau2_data(i) = tau2; % 显示仿真结果 plot(q1_data(1:i), q2_data(1:i)); title('Robot Arm Simulation'); xlabel('q1'); ylabel('q2'); drawnow; % 更新神经网络 inputs = [q1; q2; dq1; dq2]; targets = tau1; net = train(net, inputs, targets); % 更新时间 t = t + dt; end % 动力学模型 function [ddq1, ddq2] = robot_dynamics(q1, q2, dq1, dq2, tau1, tau2, m1, m2, l1, l2, g) % 计算系统参数 d1 = m1 * l1^2 + m2 * (l1^2 + l2^2 + 2 * l1 * l2 * cos(q2)) + tau1; d2 = m2 * (l2^2 + l1 * l2 * cos(q2)) + tau2; h2 = 0.5 * m2 * l1 * l2 * sin(q2); phi2 = m2 * l2^2 + 2 * m2 * l1 * l2 * cos(q2) + d1 + d2; % 计算系统动力学方程 ddq1 = (h2 * dq2^2 - m2 * l1 * l2 * sin(q2) * dq2^2 + d2 * cos(q2) - (m1 + m2) * g * l1 * sin(q1) - m2 * g * l2 * sin(q1 + q2)) / phi2; ddq2 = (-h2 * dq1^2 - m2 * l1 * l2 * sin(q2) * dq1^2 + d1 * cos(q2) - m2 * g * l2 * sin(q1 + q2)) / phi2; end % 控制器模型 function tau1 = robot_control(q1, q2, dq1, dq2, net) % 计算输入向量 inputs = [q1; q2; dq1; dq2]; % 计算输出力矩 tau1 = net(inputs); end ``` 注意:这只是一个简单的示例代码,实际使用时需要根据具体的机器人系统进行修改。

相关推荐

最新推荐

recommend-type

基于BP算法的无模型自适应迭代学习控制

引入“拟伪偏导数”概念,给出了一般非线性离散时间系统沿迭代轴的非参数动态线性化形式,并综合BP神经网络以及模糊控制各自的优点,提出了基于BP算法无模型自适应迭代学习控制方案。仿真结果表明,该控制器对模型有...
recommend-type

python构建深度神经网络(DNN)

损失函数选用交叉熵,优化器使用Adam,这是一种常用的自适应学习率优化算法。 训练模型通常涉及前向传播、反向传播和权重更新的过程。在Keras中,我们只需调用`model.fit()`方法,传入训练数据和标签,以及训练的...
recommend-type

BP神经网络整定的PID算法_matlab源程序

BP神经网络整定的PID算法_matlab源程序 BP神经网络整定的PID算法是将BP神经网络与传统的PID...BP神经网络整定的PID算法_matlab源程序是一种非常有前景的控制算法,可以实现对系统的自适应控制,具有广泛的应用前景。
recommend-type

基于嵌入式ARMLinux的播放器的设计与实现 word格式.doc

本文主要探讨了基于嵌入式ARM-Linux的播放器的设计与实现。在当前PC时代,随着嵌入式技术的快速发展,对高效、便携的多媒体设备的需求日益增长。作者首先深入剖析了ARM体系结构,特别是针对ARM9微处理器的特性,探讨了如何构建适用于嵌入式系统的嵌入式Linux操作系统。这个过程包括设置交叉编译环境,优化引导装载程序,成功移植了嵌入式Linux内核,并创建了适合S3C2410开发板的根文件系统。 在考虑到嵌入式系统硬件资源有限的特点,通常的PC机图形用户界面(GUI)无法直接应用。因此,作者选择了轻量级的Minigui作为研究对象,对其实体架构进行了研究,并将其移植到S3C2410开发板上,实现了嵌入式图形用户界面,使得系统具有简洁而易用的操作界面,提升了用户体验。 文章的核心部分是将通用媒体播放器Mplayer移植到S3C2410开发板上。针对嵌入式环境中的音频输出问题,作者针对性地解决了Mplayer播放音频时可能出现的不稳定性,实现了音乐和视频的无缝播放,打造了一个完整的嵌入式多媒体播放解决方案。 论文最后部分对整个项目进行了总结,强调了在嵌入式ARM-Linux平台上设计播放器所取得的成果,同时也指出了一些待改进和完善的方面,如系统性能优化、兼容性提升以及可能的扩展功能等。关键词包括嵌入式ARM-Linux、S3C2410芯片、Mplayer多媒体播放器、图形用户界面(GUI)以及Minigui等,这些都反映出本文研究的重点和领域。 通过这篇论文,读者不仅能了解到嵌入式系统与Linux平台结合的具体实践,还能学到如何在资源受限的环境中设计和优化多媒体播放器,为嵌入式技术在多媒体应用领域的进一步发展提供了有价值的经验和参考。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

Python字符串为空判断的动手实践:通过示例掌握技巧

![Python字符串为空判断的动手实践:通过示例掌握技巧](https://img-blog.csdnimg.cn/72f88d4fc1164d6c8b9c29d8ab5ed75c.png?x-oss-process=image/watermark,type_d3F5LXplbmhlaQ,shadow_50,text_Q1NETiBASGFyYm9yIExhdQ==,size_20,color_FFFFFF,t_70,g_se,x_16) # 1. Python字符串为空判断的基础理论 字符串为空判断是Python编程中一项基本且重要的任务。它涉及检查字符串是否为空(不包含任何字符),这在
recommend-type

box-sizing: border-box;作用是?

`box-sizing: border-box;` 是 CSS 中的一个样式属性,它改变了元素的盒模型行为。默认情况下,浏览器会计算元素内容区域(content)、内边距(padding)和边框(border)的总尺寸,也就是所谓的"标准盒模型"。而当设置为 `box-sizing: border-box;` 后,元素的总宽度和高度会包括内容、内边距和边框的总空间,这样就使得开发者更容易控制元素的实际布局大小。 具体来说,这意味着: 1. 内容区域的宽度和高度不会因为添加内边距或边框而自动扩展。 2. 边框和内边距会从元素的总尺寸中减去,而不是从内容区域开始计算。
recommend-type

经典:大学答辩通过_基于ARM微处理器的嵌入式指纹识别系统设计.pdf

本文主要探讨的是"经典:大学答辩通过_基于ARM微处理器的嵌入式指纹识别系统设计.pdf",该研究专注于嵌入式指纹识别技术在实际应用中的设计和实现。嵌入式指纹识别系统因其独特的优势——无需外部设备支持,便能独立完成指纹识别任务,正逐渐成为现代安全领域的重要组成部分。 在技术背景部分,文章指出指纹的独特性(图案、断点和交叉点的独一无二性)使其在生物特征认证中具有很高的可靠性。指纹识别技术发展迅速,不仅应用于小型设备如手机或门禁系统,也扩展到大型数据库系统,如连接个人电脑的桌面应用。然而,桌面应用受限于必须连接到计算机的条件,嵌入式系统的出现则提供了更为灵活和便捷的解决方案。 为了实现嵌入式指纹识别,研究者首先构建了一个专门的开发平台。硬件方面,详细讨论了电源电路、复位电路以及JTAG调试接口电路的设计和实现,这些都是确保系统稳定运行的基础。在软件层面,重点研究了如何在ARM芯片上移植嵌入式操作系统uC/OS-II,这是一种实时操作系统,能够有效地处理指纹识别系统的实时任务。此外,还涉及到了嵌入式TCP/IP协议栈的开发,这是实现系统间通信的关键,使得系统能够将采集的指纹数据传输到远程服务器进行比对。 关键词包括:指纹识别、嵌入式系统、实时操作系统uC/OS-II、TCP/IP协议栈。这些关键词表明了论文的核心内容和研究焦点,即围绕着如何在嵌入式环境中高效、准确地实现指纹识别功能,以及与外部网络的无缝连接。 这篇论文不仅深入解析了嵌入式指纹识别系统的硬件架构和软件策略,而且还展示了如何通过结合嵌入式技术和先进操作系统来提升系统的性能和安全性,为未来嵌入式指纹识别技术的实际应用提供了有价值的研究成果。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

Python字符串为空判断的常见问题解答:解决常见疑惑

![字符串为空判断](https://img-blog.csdnimg.cn/20210620130654176.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3dlaXhpbl8zOTQ0NTExNg==,size_16,color_FFFFFF,t_70) # 1. Python字符串为空判断的必要性 在Python编程中,字符串为空判断是至关重要的,它可以帮助我们处理各种场景,例如: - 数据验证:确保用户输入或从数据库获取的