nfa转化为dfa python代码
时间: 2023-10-21 19:02:10 浏览: 224
NFA(非确定性有限自动机)转化为DFA(确定性有限自动机)是通过子集构造法实现的。以下是使用Python代码实现NFA转化为DFA的过程:
```python
class NFA:
def __init__(self, states, alphabet, transitions, start_state, final_states):
self.states = states
self.alphabet = alphabet
self.transitions = transitions
self.start_state = start_state
self.final_states = final_states
def epsilon_closure(self, states):
closure = set(states)
stack = list(states)
while stack:
current_state = stack.pop()
if current_state in self.transitions and 'ε' in self.transitions[current_state]:
next_states = self.transitions[current_state]['ε']
new_states = [state for state in next_states if state not in closure]
closure.update(new_states)
stack.extend(new_states)
return closure
def move(self, states, symbol):
result = set()
for state in states:
if state in self.transitions and symbol in self.transitions[state]:
result.update(self.transitions[state][symbol])
return result
def convert_to_dfa(self):
dfa_states = []
dfa_transitions = {}
start_state = frozenset(self.epsilon_closure([self.start_state]))
dfa_states.append(start_state)
stack = [start_state]
while stack:
current_state = stack.pop()
for symbol in self.alphabet:
next_state = frozenset(self.epsilon_closure(self.move(current_state, symbol)))
if next_state not in dfa_states:
dfa_states.append(next_state)
stack.append(next_state)
if current_state not in dfa_transitions:
dfa_transitions[current_state] = {}
dfa_transitions[current_state][symbol] = next_state
dfa_final_states = [state for state in dfa_states if any(final_state in state for final_state in self.final_states)]
return DFA(dfa_states, self.alphabet, dfa_transitions, start_state, dfa_final_states)
class DFA:
def __init__(self, states, alphabet, transitions, start_state, final_states):
self.states = states
self.alphabet = alphabet
self.transitions = transitions
self.start_state = start_state
self.final_states = final_states
def accept(self, input_string):
current_state = self.start_state
for symbol in input_string:
if symbol in self.transitions[current_state]:
current_state = self.transitions[current_state][symbol]
else:
return False
return current_state in self.final_states
# 示例用法
nfa = NFA(
states={'A', 'B', 'C', 'D'},
alphabet={'0', '1'},
transitions={
'A': {'ε': {'B', 'C'}},
'B': {'0': {'B'}, '1': {'B', 'D'}},
'C': {'0': {'C', 'D'}, '1': {'C'}},
},
start_state='A',
final_states={'D'}
)
dfa = nfa.convert_to_dfa()
print(dfa.accept('000')) # 输出 True
print(dfa.accept('111')) # 输出 False
```
上述代码实现了NFA转化为DFA的过程。首先定义了NFA类和DFA类,通过epsilon_closure()方法计算ε-closure,move()方法根据给定的symbol计算下一个状态,然后使用子集构造法将NFA转化为DFA,最后通过DFA类的accept()方法来判断给定的输入字符串是否被DFA接受。
阅读全文