py对已知8*2的矩阵进行标准化
时间: 2024-12-06 21:24:23 浏览: 6
在Python中,对一个给定的8x2矩阵进行标准化通常意味着将矩阵的每个元素转换为其所在列的均值之差除以标准差。这一步骤有助于数据预处理,使得各个特征之间具有相似的尺度,对于很多机器学习算法是非常重要的。
你可以通过以下步骤来实现:
```python
import numpy as np
# 假设matrix是一个8x2的numpy数组
matrix = np.array([[...], [...], ..., [...]]) # 你需要提供实际的数值
# 计算每一列的均值(mean)和标准差(std)
column_means = matrix.mean(axis=0)
column_stds = matrix.std(axis=0)
# 标准化矩阵
normalized_matrix = (matrix - column_means) / column_stds
# 输出标准化后的矩阵
print(normalized_matrix)
```
在这个过程中,`axis=0`表示我们按列计算均值和标准差,如果`axis=1`则表示按行计算。标准化后的新矩阵,所有元素都将位于[-1, 1]或[0, 1]之间,取决于原始数据的范围。
相关问题
已知二次型f=x1^2+x2^2+x3^2+2*a*x1*x2+2*x1*x2+2*x1*x3+2*b*x2*x3经过正交变换化为标准形f=y2^2+2*y3^2,求参数a,b及所用的正交变换矩阵.
首先,对于二次型 $f=x_1^2+x_2^2+x_3^2+2ax_1x_2+2x_1x_2+2x_1x_3+2bx_2x_3$,可以写成矩阵形式:
$$
\boldsymbol{A}=\begin{pmatrix}
1+a & 1 & 1 \\
1 & 1 & b \\
1 & b & 1
\end{pmatrix}
$$
要将其化为标准形 $f=y_1^2+y_2^2+2y_3^2$,需要进行正交变换。设正交变换矩阵为 $\boldsymbol{P}$,即 $\boldsymbol{x}=\boldsymbol{Py}$,则原二次型可表示为 $f=\boldsymbol{x}^T\boldsymbol{A}\boldsymbol{x}$,带入正交变换后可得:
$$
f=\boldsymbol{y}^T\boldsymbol{P}^T\boldsymbol{A}\boldsymbol{P}\boldsymbol{y}
$$
为了使其化为标准形,需要求出 $\boldsymbol{P}$ 和 $\boldsymbol{P}^T\boldsymbol{A}\boldsymbol{P}$。我们分别来求解。
首先,求出 $\boldsymbol{P}^T\boldsymbol{A}\boldsymbol{P}$。由于正交变换的矩阵是正交矩阵,因此有 $\boldsymbol{P}^T\boldsymbol{P}=\boldsymbol{P}\boldsymbol{P}^T=\boldsymbol{I}$。将 $\boldsymbol{x}=\boldsymbol{Py}$ 带入原式,可得:
$$
\begin{aligned}
f &= \boldsymbol{x}^T\boldsymbol{A}\boldsymbol{x} \\
&= \boldsymbol{y}^T\boldsymbol{P}^T\boldsymbol{A}\boldsymbol{P}\boldsymbol{y} \\
&= y_1^2 + y_2^2 + (1+a)y_3^2 + (2a+2)y_1y_2 + 2(1+b)y_1y_3 + 2by_2y_3
\end{aligned}
$$
要将其化为标准形 $f=y_1^2+y_2^2+2y_3^2$,需要令 $y_1, y_2, y_3$ 的系数分别为 $1, 1, 2$,即:
$$
\begin{cases}
1+a = 2 \\
2a+2 = 2 \\
2(1+b) = 0 \\
2b = 2
\end{cases}
$$
解得 $a=0, b=1$。
其次,求出正交变换矩阵 $\boldsymbol{P}$。由于 $\boldsymbol{P}$ 是正交矩阵,因此有 $\boldsymbol{P}^T\boldsymbol{P}=\boldsymbol{P}\boldsymbol{P}^T=\boldsymbol{I}$。根据上文的计算结果,可得:
$$
\boldsymbol{P}^T\boldsymbol{A}\boldsymbol{P}=\begin{pmatrix}
2 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 1
\end{pmatrix}
$$
可以通过将 $\boldsymbol{A}$ 相似对角化来求解 $\boldsymbol{P}$。具体地,设 $\boldsymbol{P}$ 的列向量为 $\boldsymbol{p}_1, \boldsymbol{p}_2, \boldsymbol{p}_3$,则有:
$$
\begin{aligned}
\boldsymbol{P}^T\boldsymbol{A}\boldsymbol{P} &= \boldsymbol{P}^{-1}\boldsymbol{A}\boldsymbol{P} \\
&= \begin{pmatrix}
\boldsymbol{p}_1^T \\
\boldsymbol{p}_2^T \\
\boldsymbol{p}_3^T
\end{pmatrix}^{-1}
\begin{pmatrix}
1 & a+1 & b+1 \\
a+1 & 1 & b \\
b+1 & b & 1
\end{pmatrix}
\begin{pmatrix}
\boldsymbol{p}_1 & \boldsymbol{p}_2 & \boldsymbol{p}_3
\end{pmatrix}
\end{aligned}
$$
由于 $\boldsymbol{P}$ 是正交矩阵,因此有 $\boldsymbol{P}^{-1}=\boldsymbol{P}^T$,代入上式可得:
$$
\begin{pmatrix}
\boldsymbol{p}_1^T \\
\boldsymbol{p}_2^T \\
\boldsymbol{p}_3^T
\end{pmatrix}^T
\begin{pmatrix}
1 & a+1 & b+1 \\
a+1 & 1 & b \\
b+1 & b & 1
\end{pmatrix}
\begin{pmatrix}
\boldsymbol{p}_1 & \boldsymbol{p}_2 & \boldsymbol{p}_3
\end{pmatrix}
=\begin{pmatrix}
2 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 1
\end{pmatrix}
$$
解方程组可得:
$$
\begin{cases}
\boldsymbol{p}_1^T\boldsymbol{A}\boldsymbol{p}_1 = 2 \\
\boldsymbol{p}_2^T\boldsymbol{A}\boldsymbol{p}_2 = 2 \\
\boldsymbol{p}_3^T\boldsymbol{A}\boldsymbol{p}_3 = 1 \\
\boldsymbol{p}_1^T\boldsymbol{A}\boldsymbol{p}_2 = 0 \\
\boldsymbol{p}_1^T\boldsymbol{A}\boldsymbol{p}_3 = 0 \\
\boldsymbol{p}_2^T\boldsymbol{A}\boldsymbol{p}_3 = 0 \\
\boldsymbol{p}_1^T\boldsymbol{p}_1 = 1 \\
\boldsymbol{p}_2^T\boldsymbol{p}_2 = 1 \\
\boldsymbol{p}_3^T\boldsymbol{p}_3 = 1 \\
\boldsymbol{p}_1^T\boldsymbol{p}_2 = 0 \\
\boldsymbol{p}_1^T\boldsymbol{p}_3 = 0 \\
\boldsymbol{p}_2^T\boldsymbol{p}_3 = 0
\end{cases}
$$
由于 $\boldsymbol{A}$ 是对称矩阵,因此可以直接使用 Cholesky 分解求解上述方程组。具体来说,将 $\boldsymbol{A}$ 进行 Cholesky 分解,得到下三角矩阵 $\boldsymbol{L}$,使得 $\boldsymbol{A}=\boldsymbol{LL}^T$,然后令 $\boldsymbol{P}=\boldsymbol{L}^{-1}$ 即可。这里不再赘述求解过程,给出结果:
$$
\boldsymbol{P}=\begin{pmatrix}
\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & 0 \\
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 \\
0 & 0 & 1
\end{pmatrix}
$$
综上所述,参数 $a=0, b=1$,正交变换矩阵 $\boldsymbol{P}$ 为:
$$
\boldsymbol{P}=\begin{pmatrix}
\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & 0 \\
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 \\
0 & 0 & 1
\end{pmatrix}
$$
阅读全文