bp神经网络反向传播使误差减小

时间: 2023-11-23 07:08:22 浏览: 119
BP神经网络是一种常用的人工神经网络,它可以用于分类、回归等任务。BP神经网络的训练过程中,反向传播算法是一种常用的方法,它可以通过不断地调整网络中的权重和偏置来使得网络的输出结果更加接近于真实值。 具体来说,反向传播算法的训练过程可以分为以下几个步骤: 1. 前向传播:将输入数据通过网络进行正向传播,得到网络的输出结果。 2. 计算误差:将网络的输出结果与真实值进行比较,计算出误差。 3. 反向传播:将误差从输出层向输入层进行反向传播,根据误差大小调整每个神经元的权重和偏置。 4. 更新权重和偏置:根据反向传播算法得到的误差信息,更新每个神经元的权重和偏置。 5. 重复以上步骤,直到网络的输出结果达到预期的精度或者训练次数达到预设的值。 在反向传播算法中,误差的计算和反向传播是关键步骤。误差可以使用均方误差(MSE)或者交叉熵(Cross-Entropy)等方法进行计算。反向传播算法中,误差的传递可以使用链式法则(Chain Rule)来实现。
相关问题

BP神经网络反向传播算法

BP神经网络反向传播算法是一种常见的人工神经网络算法,用于训练多层前馈神经网络。它的基本思想是通过前向传播将输入样本在网络中逐层传递,得到输出结果,然后将输出结果与期望输出进行比较,计算误差,并通过反向传播将误差逐层返回到网络中,调整神经元之间的连接权重,从而不断优化网络的性能。 具体来说,BP神经网络反向传播算法主要分为两个过程:前向传播和误差反向传播。 前向传播时,输入样本在神经网络中逐层传递,直到输出层得到输出结果。在每一层中,输入值和权值通过一个激活函数得到输出值,并作为下一层的输入值。 误差反向传播时,首先计算输出层的误差,并将误差逐层反向传递到输入层。在每一层中,根据误差和激活函数的导数计算出每个神经元对误差的贡献,并将误差分配给连接权重。然后根据误差和学习率更新连接权重,以减小误差。

arduino编写bp神经网络反向传播算法代码及讲解

BP神经网络的反向传播算法是一种常用的人工神经网络算法。它是一种有监督学习算法,具有较好的非线性映射能力和逼近性能。在Arduino上实现BP神经网络反向传播算法需要以下步骤: 1. 搭建BP神经网络结构 BP神经网络结构包括输入层、隐层和输出层。输入层接收输入数据,隐层进行特征提取,输出层输出结果。在Arduino中,可以使用数组来模拟神经元和神经网络的连接。 2. 初始化权值和偏置 BP神经网络的训练过程需要初始化权值和偏置。权值和偏置的初始化可以使用随机数函数来实现。 3. 前向传播 在前向传播过程中,输入数据通过输入层传递到隐层,再通过隐层传递到输出层。每个神经元在接收到输入信号后,会根据自身的权值和偏置进行加权求和,并经过激活函数后输出。 4. 计算误差和损失函数 BP神经网络的训练过程是基于误差反向传播的,因此需要计算误差和损失函数。误差可以使用均方误差函数来计算。 5. 反向传播 在反向传播过程中,误差从输出层开始向前传递,通过链式法则计算每层的误差和权值的梯度。然后根据梯度下降算法更新权值和偏置。 6. 更新权值和偏置 根据梯度下降算法更新权值和偏置,使得损失函数逐步减小,神经网络的训练效果逐步提高。 7. 迭代训练 重复进行前向传播、误差计算、反向传播和权值更新的过程,直到损失函数收敛或达到预设的训练次数为止。 下面是一个简单的Arduino代码实现BP神经网络反向传播算法: ```c++ #include <math.h> #define INPUT_NUM 2 #define HIDDEN_NUM 4 #define OUTPUT_NUM 1 #define LEARNING_RATE 0.5 #define EPOCHS 5000 float input[INPUT_NUM]; float hidden[HIDDEN_NUM]; float output[OUTPUT_NUM]; float target[OUTPUT_NUM]; float hidden_bias[HIDDEN_NUM]; float output_bias[OUTPUT_NUM]; float hidden_weights[INPUT_NUM][HIDDEN_NUM]; float output_weights[HIDDEN_NUM][OUTPUT_NUM]; float sigmoid(float x) { return 1.0 / (1.0 + exp(-x)); } void init_weights_bias() { for (int i = 0; i < HIDDEN_NUM; i++) { hidden_bias[i] = random(10) - 5; output_bias[0] = random(10) - 5; for (int j = 0; j < INPUT_NUM; j++) { hidden_weights[j][i] = random(10) - 5; } } for (int i = 0; i < OUTPUT_NUM; i++) { for (int j = 0; j < HIDDEN_NUM; j++) { output_weights[j][i] = random(10) - 5; } } } void forward() { for (int i = 0; i < HIDDEN_NUM; i++) { hidden[i] = 0; for (int j = 0; j < INPUT_NUM; j++) { hidden[i] += input[j] * hidden_weights[j][i]; } hidden[i] += hidden_bias[i]; hidden[i] = sigmoid(hidden[i]); } output[0] = 0; for (int i = 0; i < HIDDEN_NUM; i++) { output[0] += hidden[i] * output_weights[i][0]; } output[0] += output_bias[0]; output[0] = sigmoid(output[0]); } void backward() { float output_error = target[0] - output[0]; float output_delta = output_error * output[0] * (1 - output[0]); float hidden_error[HIDDEN_NUM]; float hidden_delta[HIDDEN_NUM]; for (int i = 0; i < HIDDEN_NUM; i++) { hidden_error[i] = output_delta * output_weights[i][0]; hidden_delta[i] = hidden_error[i] * hidden[i] * (1 - hidden[i]); } for (int i = 0; i < HIDDEN_NUM; i++) { for (int j = 0; j < OUTPUT_NUM; j++) { output_weights[i][j] += LEARNING_RATE * output_delta * hidden[i]; } } for (int i = 0; i < INPUT_NUM; i++) { for (int j = 0; j < HIDDEN_NUM; j++) { hidden_weights[i][j] += LEARNING_RATE * hidden_delta[j] * input[i]; } } for (int i = 0; i < HIDDEN_NUM; i++) { hidden_bias[i] += LEARNING_RATE * hidden_delta[i]; } output_bias[0] += LEARNING_RATE * output_delta; } void train() { for (int i = 0; i < EPOCHS; i++) { forward(); backward(); } } void setup() { Serial.begin(9600); randomSeed(analogRead(0)); init_weights_bias(); } void loop() { input[0] = random(10) / 10.0; input[1] = random(10) / 10.0; target[0] = input[0] * input[1]; train(); Serial.print("Input: "); Serial.print(input[0]); Serial.print(","); Serial.print(input[1]); Serial.print(" Target: "); Serial.print(target[0]); Serial.print(" Output: "); Serial.println(output[0]); delay(1000); } ``` 代码中使用了sigmoid函数作为激活函数,使用均方误差函数计算误差,使用随机数函数初始化权值和偏置,使用梯度下降算法更新权值和偏置。在Arduino上运行代码,可以模拟BP神经网络进行乘法运算的训练过程,并输出每次训练的输入、目标和输出结果。
阅读全文

相关推荐

大家在看

recommend-type

手机银行精准营销策略研究

手机银行精准营销策略研究,蒋娟,吕亮,随着4G时代的到来和WIFI覆盖范围的病毒式发展,广大消费者对移动金融服务的需求与日俱增。手机银行作为结合现代互联网通信技术和电
recommend-type

微软面试100题系列之高清完整版PDF文档[带目录+标签]by_July

本微软面试100题系列,共计11篇文章,300多道面试题,截取本blog索引性文章:程序员面试、算法研究、编程艺术、红黑树、数据挖掘5大系列集锦:http://blog.csdn.net/v_july_v/article/details/6543438,中的第一部分编辑而成,涵盖了数据结构、算法、海量数据处理等3大主题。 闲不多说,眼下九月正是校招,各种笔试,面试进行火热的时节,希望此份微软面试100题系列的PDF文档能给正在找工作的朋友助一臂之力! 如果读者发现了本系列任何一题的答案有问题,错误,bug,恳请随时不吝指正,你可以直接评论在原文之下,也可以通过私信联系我。 祝诸君均能找到令自己满意的offer或工作,谢谢。July、二零一二年九月二十日
recommend-type

Cassandra数据模型设计最佳实践

本文是Cassandra数据模型设计第一篇(全两篇),该系列文章包含了eBay使用Cassandra数据模型设计的一些实践。其中一些最佳实践我们是通过社区学到的,有些对我们来说也是新知识,还有一些仍然具有争议性,可能在要通过进一步的实践才能从中获益。本文中,我将会讲解一些基本的实践以及一个详细的例子。即使你不了解Cassandra,也应该能理解下面大多数内容。我们尝试使用Cassandra已经超过1年时间了。Cassandra现在正在服务一些用例,涉及到的业务从大量写操作的日志记录和跟踪,到一些混合工作。其中一项服务是我们的“SocialSignal”项目,支撑着ebay的pruductpag
recommend-type

seadas海洋遥感软件使用说明

这是一个海洋遥感软件seadas的使用文档,希望这个资料能对学习海洋遥感的朋友有所帮助
recommend-type

TS流结构分析(PAT和PMT).doc

分析数字电视中ts的结构和组成,并对PAT表,PMT表进行详细的分析,包含详细的解析代码,叫你如何解析TS流中的数据

最新推荐

recommend-type

BP神经网络原理及Python实现代码

**BP神经网络原理** BP(Back Propagation)神经网络是一种基于梯度下降的监督学习算法,主要用于多层前馈神经网络的训练。它的核心思想是通过反向传播误差来更新网络权重,使得网络的预测结果逐渐接近实际目标值。...
recommend-type

基于PSO-BP 神经网络的短期负荷预测算法

BP神经网络的训练过程是一个迭代的过程,输入已知的学习样本,通过前向传播计算各层神经元的输出,然后反向传播调整权重和阈值以减小总误差。这个过程持续到满足停止条件,如达到一定的训练次数或误差阈值。 实验...
recommend-type

Python实现的三层BP神经网络算法示例

- 代码示例提供了完整的三层BP神经网络的实现,包括权重初始化、前向传播和反向传播。用户可以通过运行演示函数并改变隐藏层节点数来观察模型性能的变化。 这个Python实现的三层BP神经网络示例,为初学者提供了一...
recommend-type

BP神经网络模型与学习算法

总结,BP神经网络模型与学习算法是神经网络学习的基础,它通过反向传播误差信息来优化网络权重,适应各种非线性问题。在蚊子分类等实际应用中,BP网络能通过学习和训练,有效地捕捉特征并进行准确的分类预测。
recommend-type

BP神经网络讲义 BP算法基本原理

BP神经网络,全称为Back ...总的来说,BP神经网络通过误差反向传播来逐步调整权重,从而提高网络的预测能力。这一算法广泛应用于模式识别、函数逼近、数据分析等多个领域,是深度学习和人工智能领域的重要基础。
recommend-type

易语言例程:用易核心支持库打造功能丰富的IE浏览框

资源摘要信息:"易语言-易核心支持库实现功能完善的IE浏览框" 易语言是一种简单易学的编程语言,主要面向中文用户。它提供了大量的库和组件,使得开发者能够快速开发各种应用程序。在易语言中,通过调用易核心支持库,可以实现功能完善的IE浏览框。IE浏览框,顾名思义,就是能够在一个应用程序窗口内嵌入一个Internet Explorer浏览器控件,从而实现网页浏览的功能。 易核心支持库是易语言中的一个重要组件,它提供了对IE浏览器核心的调用接口,使得开发者能够在易语言环境下使用IE浏览器的功能。通过这种方式,开发者可以创建一个具有完整功能的IE浏览器实例,它不仅能够显示网页,还能够支持各种浏览器操作,如前进、后退、刷新、停止等,并且还能够响应各种事件,如页面加载完成、链接点击等。 在易语言中实现IE浏览框,通常需要以下几个步骤: 1. 引入易核心支持库:首先需要在易语言的开发环境中引入易核心支持库,这样才能在程序中使用库提供的功能。 2. 创建浏览器控件:使用易核心支持库提供的API,创建一个浏览器控件实例。在这个过程中,可以设置控件的初始大小、位置等属性。 3. 加载网页:将浏览器控件与一个网页地址关联起来,即可在控件中加载显示网页内容。 4. 控制浏览器行为:通过易核心支持库提供的接口,可以控制浏览器的行为,如前进、后退、刷新页面等。同时,也可以响应浏览器事件,实现自定义的交互逻辑。 5. 调试和优化:在开发完成后,需要对IE浏览框进行调试,确保其在不同的操作和网页内容下均能够正常工作。对于性能和兼容性的问题需要进行相应的优化处理。 易语言的易核心支持库使得在易语言环境下实现IE浏览框变得非常方便,它极大地降低了开发难度,并且提高了开发效率。由于易语言的易用性,即使是初学者也能够在短时间内学会如何创建和操作IE浏览框,实现网页浏览的功能。 需要注意的是,由于IE浏览器已经逐渐被微软边缘浏览器(Microsoft Edge)所替代,使用IE核心的技术未来可能面临兼容性和安全性的挑战。因此,在实际开发中,开发者应考虑到这一点,并根据需求选择合适的浏览器控件实现技术。 此外,易语言虽然简化了编程过程,但其在功能上可能不如主流的编程语言(如C++, Java等)强大,且社区和技术支持相比其他语言可能较为有限,这些都是在选择易语言作为开发工具时需要考虑的因素。 文件名列表中的“IE类”可能是指包含实现IE浏览框功能的类库或者示例代码。在易语言中,类库是一组封装好的代码模块,其中包含了各种功能的实现。通过在易语言项目中引用这些类库,开发者可以简化开发过程,快速实现特定功能。而示例代码则为开发者提供了具体的实现参考,帮助理解和学习如何使用易核心支持库来创建IE浏览框。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

STM32F407ZG引脚功能深度剖析:掌握引脚分布与配置的秘密(全面解读)

![STM32F407ZG引脚功能深度剖析:掌握引脚分布与配置的秘密(全面解读)](https://tapit.vn/wp-content/uploads/2019/01/cubemx-peripheral-1024x545.png) # 摘要 本文全面介绍了STM32F407ZG微控制器的引脚特性、功能、配置和应用。首先概述了该芯片的引脚布局,然后详细探讨了标准外设、高级控制以及特殊功能引脚的不同配置和使用方法。在此基础上,文章深入分析了引脚模式配置、高级配置技巧,并提供了实际应用案例,如LED控制和串口通信。在设计方面,阐述了引脚布局策略、多层板设计及高密度引脚应用的解决方案。最后,介绍
recommend-type

给出文档中问题的答案代码

您提到的是需要编写MATLAB代码来实现文档中的实验任务。以下是根据文档内容编写的MATLAB代码示例: ```matlab % 上机2 实验代码 % 读取输入图像 inputImage = imread('your_face_image.jpg'); % 替换为您的图像文件路径 if size(inputImage, 1) < 1024 || size(inputImage, 2) < 1024 error('图像尺寸必须大于1024x1024'); end % 将彩色图像转换为灰度图像 grayImage = rgb2gray(inputImage); % 调整图像大小为5
recommend-type

Docker构建与运行Next.js应用的指南

资源摘要信息:"rivoltafilippo-next-main" 在探讨“rivoltafilippo-next-main”这一资源时,首先要从标题“rivoltafilippo-next”入手。这个标题可能是某一项目、代码库或应用的命名,结合描述中提到的Docker构建和运行命令,我们可以推断这是一个基于Docker的Node.js应用,特别是使用了Next.js框架的项目。Next.js是一个流行的React框架,用于服务器端渲染和静态网站生成。 描述部分提供了构建和运行基于Docker的Next.js应用的具体命令: 1. `docker build`命令用于创建一个新的Docker镜像。在构建镜像的过程中,开发者可以定义Dockerfile文件,该文件是一个文本文件,包含了创建Docker镜像所需的指令集。通过使用`-t`参数,用户可以为生成的镜像指定一个标签,这里的标签是`my-next-js-app`,意味着构建的镜像将被标记为`my-next-js-app`,方便后续的识别和引用。 2. `docker run`命令则用于运行一个Docker容器,即基于镜像启动一个实例。在这个命令中,`-p 3000:3000`参数指示Docker将容器内的3000端口映射到宿主机的3000端口,这样做通常是为了让宿主机能够访问容器内运行的应用。`my-next-js-app`是容器运行时使用的镜像名称,这个名称应该与构建时指定的标签一致。 最后,我们注意到资源包含了“TypeScript”这一标签,这表明项目可能使用了TypeScript语言。TypeScript是JavaScript的一个超集,它添加了静态类型定义的特性,能够帮助开发者更容易地维护和扩展代码,尤其是在大型项目中。 结合资源名称“rivoltafilippo-next-main”,我们可以推测这是项目的主目录或主仓库。通常情况下,开发者会将项目的源代码、配置文件、构建脚本等放在一个主要的目录中,这个目录通常命名为“main”或“src”等,以便于管理和维护。 综上所述,我们可以总结出以下几个重要的知识点: - Docker容器和镜像的概念以及它们之间的关系:Docker镜像是静态的只读模板,而Docker容器是从镜像实例化的动态运行环境。 - `docker build`命令的使用方法和作用:这个命令用于创建新的Docker镜像,通常需要一个Dockerfile来指定构建的指令和环境。 - `docker run`命令的使用方法和作用:该命令用于根据镜像启动一个或多个容器实例,并可指定端口映射等运行参数。 - Next.js框架的特点:Next.js是一个支持服务器端渲染和静态网站生成的React框架,适合构建现代的Web应用。 - TypeScript的作用和优势:TypeScript是JavaScript的一个超集,它提供了静态类型检查等特性,有助于提高代码质量和可维护性。 - 项目资源命名习惯:通常项目会有一个主目录,用来存放项目的源代码和核心配置文件,以便于项目的版本控制和团队协作。 以上内容基于给定的信息进行了深入的分析,为理解该项目的构建、运行方式以及技术栈提供了基础。在实际开发中,开发者应当参考更详细的文档和指南,以更高效地管理和部署基于Docker和TypeScript的Next.js项目。