bp神经网络反向传播使误差减小
时间: 2023-11-23 07:08:22 浏览: 119
BP神经网络是一种常用的人工神经网络,它可以用于分类、回归等任务。BP神经网络的训练过程中,反向传播算法是一种常用的方法,它可以通过不断地调整网络中的权重和偏置来使得网络的输出结果更加接近于真实值。
具体来说,反向传播算法的训练过程可以分为以下几个步骤:
1. 前向传播:将输入数据通过网络进行正向传播,得到网络的输出结果。
2. 计算误差:将网络的输出结果与真实值进行比较,计算出误差。
3. 反向传播:将误差从输出层向输入层进行反向传播,根据误差大小调整每个神经元的权重和偏置。
4. 更新权重和偏置:根据反向传播算法得到的误差信息,更新每个神经元的权重和偏置。
5. 重复以上步骤,直到网络的输出结果达到预期的精度或者训练次数达到预设的值。
在反向传播算法中,误差的计算和反向传播是关键步骤。误差可以使用均方误差(MSE)或者交叉熵(Cross-Entropy)等方法进行计算。反向传播算法中,误差的传递可以使用链式法则(Chain Rule)来实现。
相关问题
BP神经网络反向传播算法
BP神经网络反向传播算法是一种常见的人工神经网络算法,用于训练多层前馈神经网络。它的基本思想是通过前向传播将输入样本在网络中逐层传递,得到输出结果,然后将输出结果与期望输出进行比较,计算误差,并通过反向传播将误差逐层返回到网络中,调整神经元之间的连接权重,从而不断优化网络的性能。
具体来说,BP神经网络反向传播算法主要分为两个过程:前向传播和误差反向传播。
前向传播时,输入样本在神经网络中逐层传递,直到输出层得到输出结果。在每一层中,输入值和权值通过一个激活函数得到输出值,并作为下一层的输入值。
误差反向传播时,首先计算输出层的误差,并将误差逐层反向传递到输入层。在每一层中,根据误差和激活函数的导数计算出每个神经元对误差的贡献,并将误差分配给连接权重。然后根据误差和学习率更新连接权重,以减小误差。
arduino编写bp神经网络反向传播算法代码及讲解
BP神经网络的反向传播算法是一种常用的人工神经网络算法。它是一种有监督学习算法,具有较好的非线性映射能力和逼近性能。在Arduino上实现BP神经网络反向传播算法需要以下步骤:
1. 搭建BP神经网络结构
BP神经网络结构包括输入层、隐层和输出层。输入层接收输入数据,隐层进行特征提取,输出层输出结果。在Arduino中,可以使用数组来模拟神经元和神经网络的连接。
2. 初始化权值和偏置
BP神经网络的训练过程需要初始化权值和偏置。权值和偏置的初始化可以使用随机数函数来实现。
3. 前向传播
在前向传播过程中,输入数据通过输入层传递到隐层,再通过隐层传递到输出层。每个神经元在接收到输入信号后,会根据自身的权值和偏置进行加权求和,并经过激活函数后输出。
4. 计算误差和损失函数
BP神经网络的训练过程是基于误差反向传播的,因此需要计算误差和损失函数。误差可以使用均方误差函数来计算。
5. 反向传播
在反向传播过程中,误差从输出层开始向前传递,通过链式法则计算每层的误差和权值的梯度。然后根据梯度下降算法更新权值和偏置。
6. 更新权值和偏置
根据梯度下降算法更新权值和偏置,使得损失函数逐步减小,神经网络的训练效果逐步提高。
7. 迭代训练
重复进行前向传播、误差计算、反向传播和权值更新的过程,直到损失函数收敛或达到预设的训练次数为止。
下面是一个简单的Arduino代码实现BP神经网络反向传播算法:
```c++
#include <math.h>
#define INPUT_NUM 2
#define HIDDEN_NUM 4
#define OUTPUT_NUM 1
#define LEARNING_RATE 0.5
#define EPOCHS 5000
float input[INPUT_NUM];
float hidden[HIDDEN_NUM];
float output[OUTPUT_NUM];
float target[OUTPUT_NUM];
float hidden_bias[HIDDEN_NUM];
float output_bias[OUTPUT_NUM];
float hidden_weights[INPUT_NUM][HIDDEN_NUM];
float output_weights[HIDDEN_NUM][OUTPUT_NUM];
float sigmoid(float x) {
return 1.0 / (1.0 + exp(-x));
}
void init_weights_bias() {
for (int i = 0; i < HIDDEN_NUM; i++) {
hidden_bias[i] = random(10) - 5;
output_bias[0] = random(10) - 5;
for (int j = 0; j < INPUT_NUM; j++) {
hidden_weights[j][i] = random(10) - 5;
}
}
for (int i = 0; i < OUTPUT_NUM; i++) {
for (int j = 0; j < HIDDEN_NUM; j++) {
output_weights[j][i] = random(10) - 5;
}
}
}
void forward() {
for (int i = 0; i < HIDDEN_NUM; i++) {
hidden[i] = 0;
for (int j = 0; j < INPUT_NUM; j++) {
hidden[i] += input[j] * hidden_weights[j][i];
}
hidden[i] += hidden_bias[i];
hidden[i] = sigmoid(hidden[i]);
}
output[0] = 0;
for (int i = 0; i < HIDDEN_NUM; i++) {
output[0] += hidden[i] * output_weights[i][0];
}
output[0] += output_bias[0];
output[0] = sigmoid(output[0]);
}
void backward() {
float output_error = target[0] - output[0];
float output_delta = output_error * output[0] * (1 - output[0]);
float hidden_error[HIDDEN_NUM];
float hidden_delta[HIDDEN_NUM];
for (int i = 0; i < HIDDEN_NUM; i++) {
hidden_error[i] = output_delta * output_weights[i][0];
hidden_delta[i] = hidden_error[i] * hidden[i] * (1 - hidden[i]);
}
for (int i = 0; i < HIDDEN_NUM; i++) {
for (int j = 0; j < OUTPUT_NUM; j++) {
output_weights[i][j] += LEARNING_RATE * output_delta * hidden[i];
}
}
for (int i = 0; i < INPUT_NUM; i++) {
for (int j = 0; j < HIDDEN_NUM; j++) {
hidden_weights[i][j] += LEARNING_RATE * hidden_delta[j] * input[i];
}
}
for (int i = 0; i < HIDDEN_NUM; i++) {
hidden_bias[i] += LEARNING_RATE * hidden_delta[i];
}
output_bias[0] += LEARNING_RATE * output_delta;
}
void train() {
for (int i = 0; i < EPOCHS; i++) {
forward();
backward();
}
}
void setup() {
Serial.begin(9600);
randomSeed(analogRead(0));
init_weights_bias();
}
void loop() {
input[0] = random(10) / 10.0;
input[1] = random(10) / 10.0;
target[0] = input[0] * input[1];
train();
Serial.print("Input: ");
Serial.print(input[0]);
Serial.print(",");
Serial.print(input[1]);
Serial.print(" Target: ");
Serial.print(target[0]);
Serial.print(" Output: ");
Serial.println(output[0]);
delay(1000);
}
```
代码中使用了sigmoid函数作为激活函数,使用均方误差函数计算误差,使用随机数函数初始化权值和偏置,使用梯度下降算法更新权值和偏置。在Arduino上运行代码,可以模拟BP神经网络进行乘法运算的训练过程,并输出每次训练的输入、目标和输出结果。
阅读全文