神经网络图像分类代码
时间: 2024-09-06 16:03:47 浏览: 39
使用深度学习中的神经网络进行图像分类,通常会采用卷积神经网络(Convolutional Neural Networks,CNN),因为它们特别适合处理网格状的数据结构,如图片。这里有一个简单的例子,展示如何使用PyTorch构建一个基础的CNN进行图像分类:
```python
import torch
import torchvision
import torchvision.transforms as transforms
# 定义预处理步骤
transform = transforms.Compose([
transforms.Resize((224, 224)), # 调整图片尺寸
transforms.ToTensor(), # 将像素值转为0-1之间
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) # 归一化
])
# 加载MNIST数据集
train_dataset = torchvision.datasets.CIFAR10(root='./data', train=True, download=True, transform=transform)
test_dataset = torchvision.datasets.CIFAR10(root='./data', train=False, download=True, transform=transform)
# 数据加载器
train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=32, shuffle=True)
test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=32, shuffle=False)
# 构建LeNet-5风格的CNN模型
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(3, 6, 5)
self.pool = nn.MaxPool2d(2, 2)
self.conv2 = nn.Conv2d(6, 16, 5)
self.fc1 = nn.Linear(16 * 5 * 5, 120)
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, 10) # CIFAR10有10个类别
def forward(self, x):
x = self.pool(F.relu(self.conv1(x)))
x = self.pool(F.relu(self.conv2(x)))
x = x.view(-1, 16 * 5 * 5)
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.fc3(x)
return x
net = Net()
# 定义损失函数和优化器
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(net.parameters(), lr=0.001, momentum=0.9)
# 训练过程
num_epochs = 10
for epoch in range(num_epochs):
running_loss = 0.0
for i, data in enumerate(train_loader, 0):
inputs, labels = data
optimizer.zero_grad()
outputs = net(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
running_loss += loss.item()
print(f"Epoch {epoch+1}, Loss: {running_loss/len(train_loader)}")
# 测试模型
correct = 0
total = 0
with torch.no_grad():
for data in test_loader:
images, labels = data
outputs = net(images)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
print(f"Accuracy of the network on the 10000 test images: {100 * correct / total}%")
```
这个例子使用的是LeNet-5模型,它在原始MNIST数据上已经足够好,但对于更复杂的CIFAR10,可能需要更深的网络或者数据增强等手段。
阅读全文