seed=2 torch.manual_seed(seed) torch.cuda.manual_seed(seed) torch.cuda.manual_seed_all(seed) np.random.seed(seed) random.seed(seed) torch.manual_seed(seed) torch.backends.cudnn.benchmark=False torch.backends.cudnn.deterministic=True os.environ["H5PY_DEFAULT_READONLY"] = "1"
时间: 2024-04-19 17:27:26 浏览: 199
train.docx
这段代码的作用是设置随机种子,以确保实验的可重复性和稳定性。具体来说,它会设置以下几个部分的随机种子:
1. 设置PyTorch的随机种子:`torch.manual_seed(seed)`,用于生成随机数。
2. 设置CUDA随机种子:`torch.cuda.manual_seed(seed)`和`torch.cuda.manual_seed_all(seed)`,用于在使用CUDA时生成随机数。
3. 设置NumPy的随机种子:`np.random.seed(seed)`,用于在使用NumPy时生成随机数。
4. 设置Python内置随机库的随机种子:`random.seed(seed)`,用于在使用Python内置的random库时生成随机数。
5. 设置PyTorch的CUDNN库行为:`torch.backends.cudnn.benchmark=False`和`torch.backends.cudnn.deterministic=True`,用于控制CUDNN库的行为,使得结果可重复。
6. 设置H5PY库只读模式:`os.environ["H5PY_DEFAULT_READONLY"] = "1"`,用于设置H5PY库在读取文件时只读取数据而不执行写入操作。
通过以上设置,可以确保在相同的随机种子下运行实验时,生成的随机数序列是相同的,从而保证实验结果的可重复性。
阅读全文