resized_image

时间: 2023-08-30 08:12:52 浏览: 48
对于调整图像大小,你可以使用OpenCV库中的resize函数。以下是一个示例代码段,演示了如何调整图像的大小: ```python import cv2 # 加载图像 image = cv2.imread('image.jpg') # 调整图像大小 resized_image = cv2.resize(image, (new_width, new_height)) # 保存调整后的图像 cv2.imwrite('resized_image.jpg', resized_image) ``` 在上面的代码中,你需要将`image.jpg`替换为你想要调整大小的图像路径。`new_width`和`new_height`是你想要调整后的图像的新宽度和高度。 希望这可以帮助到你!如果有任何其他问题,请随时提问。
相关问题

下面这段代码在做什么? def resize_norm_img(img, max_wh_ratio, rec_image_shape='3,48,320'): rec_image_shape = [int(v) for v in rec_image_shape.split(",")] imgC, imgH, imgW = rec_image_shape assert imgC == img.shape[2] max_wh_ratio = max(max_wh_ratio, imgW / imgH) imgW = int((imgH * max_wh_ratio)) imgW = max(min(imgW, 1280), 16) h, w = img.shape[:2] ratio = w / float(h) ratio_imgH = math.ceil(imgH * ratio) ratio_imgH = max(ratio_imgH, 16) if ratio_imgH > imgW: resized_w = imgW else: resized_w = int(ratio_imgH) resized_image = cv2.resize(img, (resized_w, imgH)) resized_image = resized_image.astype('float32') resized_image = resized_image.transpose((2, 0, 1)) / 255 resized_image -= 0.5 resized_image /= 0.5 padding_im = np.zeros((imgC, imgH, imgW), dtype=np.float32) padding_im[:, :, 0:resized_w] = resized_image return padding_im

这段代码是用来调整图像大小和归一化图像像素值的。函数的输入参数包括原始图片(img)、图像高宽比(max_wh_ratio)、目标图像形状(rec_image_shape)。首先,函数将输入的目标图像形状(rec_image_shape)解析为通道数(imgC)、高(imgH)和宽(imgW)。然后,函数根据图像高宽比(max_wh_ratio)重新计算图像的宽度(imgW),并将其限制在一定的范围内。接下来,函数根据比例计算调整后的图像高度(ratio_imgH)。最后,函数对调整后的图像进行归一化、转置和填充操作,并返回修改后的图像(padding_im)。

def resize_norm_img(self, img, max_wh_ratio): imgC, imgH, imgW = self.rec_image_shape assert imgC == img.shape[2] imgW = int((32 * max_wh_ratio)) h, w = img.shape[:2] ratio = w / float(h) if math.ceil(imgH * ratio) > imgW: resized_w = imgW else: resized_w = int(math.ceil(imgH * ratio)) resized_image = cv2.resize(img, (resized_w, imgH)) resized_image = resized_image.astype('float32') # [0, 255] -> [0, 1] resized_image = resized_image.transpose((2, 0, 1)) / 255 # [0, 1] -> [-0.5, 0.5] resized_image -= 0.5 # [-0.5, 0.5] -> [-1, 1] resized_image /= 0.5 padding_im = np.zeros((imgC, imgH, imgW), dtype=np.float32) padding_im[:, :, 0:resized_w] = resized_image return padding_im

这段代码是一个OCR识别模型中的图像预处理部分。它的作用是将输入的图像进行缩放、归一化和填充,以适配模型的输入要求。 具体地,它首先确定了输入图像的通道数、高度和宽度,然后根据最大宽高比限制计算出缩放后的宽度。接着,它计算图像的宽高比,并根据它来确定缩放后的高度和宽度。接着,它将缩放后的图像进行归一化,将像素值从[0, 255]映射到[0, 1],然后将像素值从[0, 1]映射到[-0.5, 0.5],最后将像素值从[-0.5, 0.5]映射到[-1, 1]。最后,它将归一化后的图像填充到指定的高度和宽度,以适配模型的输入要求。 这段代码的作用是将输入图像转换为模型可以接受的格式,并且保证图像的信息不会丢失。

相关推荐

我想在以下这段代码中,添加显示标有特征点的图像的功能。def cnn_feature_extract(image,scales=[.25, 0.50, 1.0], nfeatures = 1000): if len(image.shape) == 2: image = image[:, :, np.newaxis] image = np.repeat(image, 3, -1) # TODO: switch to PIL.Image due to deprecation of scipy.misc.imresize. resized_image = image if max(resized_image.shape) > max_edge: resized_image = scipy.misc.imresize( resized_image, max_edge / max(resized_image.shape) ).astype('float') if sum(resized_image.shape[: 2]) > max_sum_edges: resized_image = scipy.misc.imresize( resized_image, max_sum_edges / sum(resized_image.shape[: 2]) ).astype('float') fact_i = image.shape[0] / resized_image.shape[0] fact_j = image.shape[1] / resized_image.shape[1] input_image = preprocess_image( resized_image, preprocessing="torch" ) with torch.no_grad(): if multiscale: keypoints, scores, descriptors = process_multiscale( torch.tensor( input_image[np.newaxis, :, :, :].astype(np.float32), device=device ), model, scales ) else: keypoints, scores, descriptors = process_multiscale( torch.tensor( input_image[np.newaxis, :, :, :].astype(np.float32), device=device ), model, scales ) # Input image coordinates keypoints[:, 0] *= fact_i keypoints[:, 1] *= fact_j # i, j -> u, v keypoints = keypoints[:, [1, 0, 2]] if nfeatures != -1: #根据scores排序 scores2 = np.array([scores]).T res = np.hstack((scores2, keypoints)) res = res[np.lexsort(-res[:, ::-1].T)] res = np.hstack((res, descriptors)) #取前几个 scores = res[0:nfeatures, 0].copy() keypoints = res[0:nfeatures, 1:4].copy() descriptors = res[0:nfeatures, 4:].copy() del res return keypoints, scores, descriptors

import cv2 import numpy as np import torch as torch from torchvision.models import densenet121 # Load the DenseNet model model = densenet121(pretrained=True) # Read the image image = cv2.imread('C:/Users/23594/Desktop/888.jpg') # Convert the image to grayscale grayscale_image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) # Resize the image to the size of the model input resized_image = cv2.resize(grayscale_image, (224, 224)) # Normalize the image normalized_image = resized_image / 255.0 # Convert the image to a tensor image_tensor = torch.from_numpy(normalized_image).float() # Predict the key points of the person predictions = model(image_tensor) # Convert the predictions to a list of points points = [] for i in range(len(predictions[0])): points.append((predictions[0][i][0], predictions[0][i][1])) # Draw the key points on the image cv2.drawKeypoints(image, points, np.array([]), (0, 255, 0), flags=cv2.DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS) # Display the image cv2.imshow('Image', image) cv2.waitKey(0)import cv2 import numpy as np import torch as torch from torchvision.models import densenet121 # Load the DenseNet model model = densenet121(pretrained=True) # Read the image image = cv2.imread('C:/Users/23594/Desktop/888.jpg') # Convert the image to grayscale grayscale_image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) # Resize the image to the size of the model input resized_image = cv2.resize(grayscale_image, (224, 224)) # Normalize the image normalized_image = resized_image / 255.0 # Convert the image to a tensor image_tensor = torch.from_numpy(normalized_image).float() # Predict the key points of the person predictions = model(image_tensor) # Convert the predictions to a list of points points = [] for i in range(len(predictions[0])): points.append((predictions[0][i][0], predictions[0][i][1])) # Draw the key points on the image cv2.drawKeypoints(image, points, np.array([]), (0, 255, 0), flags=cv2.DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS) # Display the image cv2.imshow('Image', image) cv2.waitKey(0)

最新推荐

recommend-type

使用npy转image图像并保存的实例

image_names = [f for f in image_names if os.path.splitext(f)[1] == ".npy"] random.shuffle(image_names) train_num = int(len(image_names) * self.ratio) for idx, image_name in enumerate(image_names[:...
recommend-type

文艺高逼格28.pptx

文艺风格ppt模板文艺风格ppt模板 文艺风格ppt模板 文艺风格ppt模板 文艺风格ppt模板 文艺风格ppt模板 文艺风格ppt模板 文艺风格ppt模板 文艺风格ppt模板 文艺风格ppt模板 文艺风格ppt模板 文艺风格ppt模板 文艺风格ppt模板 文艺风格ppt模板 文艺风格ppt模板
recommend-type

计算机基础知识试题与解答

"计算机基础知识试题及答案-(1).doc" 这篇文档包含了计算机基础知识的多项选择题,涵盖了计算机历史、操作系统、计算机分类、电子器件、计算机系统组成、软件类型、计算机语言、运算速度度量单位、数据存储单位、进制转换以及输入/输出设备等多个方面。 1. 世界上第一台电子数字计算机名为ENIAC(电子数字积分计算器),这是计算机发展史上的一个重要里程碑。 2. 操作系统的作用是控制和管理系统资源的使用,它负责管理计算机硬件和软件资源,提供用户界面,使用户能够高效地使用计算机。 3. 个人计算机(PC)属于微型计算机类别,适合个人使用,具有较高的性价比和灵活性。 4. 当前制造计算机普遍采用的电子器件是超大规模集成电路(VLSI),这使得计算机的处理能力和集成度大大提高。 5. 完整的计算机系统由硬件系统和软件系统两部分组成,硬件包括计算机硬件设备,软件则包括系统软件和应用软件。 6. 计算机软件不仅指计算机程序,还包括相关的文档、数据和程序设计语言。 7. 软件系统通常分为系统软件和应用软件,系统软件如操作系统,应用软件则是用户用于特定任务的软件。 8. 机器语言是计算机可以直接执行的语言,不需要编译,因为它直接对应于硬件指令集。 9. 微机的性能主要由CPU决定,CPU的性能指标包括时钟频率、架构、核心数量等。 10. 运算器是计算机中的一个重要组成部分,主要负责进行算术和逻辑运算。 11. MIPS(Millions of Instructions Per Second)是衡量计算机每秒执行指令数的单位,用于描述计算机的运算速度。 12. 计算机存储数据的最小单位是位(比特,bit),是二进制的基本单位。 13. 一个字节由8个二进制位组成,是计算机中表示基本信息的最小单位。 14. 1MB(兆字节)等于1,048,576字节,这是常见的内存和存储容量单位。 15. 八进制数的范围是0-7,因此317是一个可能的八进制数。 16. 与十进制36.875等值的二进制数是100100.111,其中整数部分36转换为二进制为100100,小数部分0.875转换为二进制为0.111。 17. 逻辑运算中,0+1应该等于1,但选项C错误地给出了0+1=0。 18. 磁盘是一种外存储设备,用于长期存储大量数据,既可读也可写。 这些题目旨在帮助学习者巩固和检验计算机基础知识的理解,涵盖的领域广泛,对于初学者或需要复习基础知识的人来说很有价值。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【进阶】音频处理基础:使用Librosa

![【进阶】音频处理基础:使用Librosa](https://picx.zhimg.com/80/v2-a39e5c9bff1d920097341591ca8a2dfe_1440w.webp?source=1def8aca) # 2.1 Librosa库的安装和导入 Librosa库是一个用于音频处理的Python库。要安装Librosa库,请在命令行中输入以下命令: ``` pip install librosa ``` 安装完成后,可以通过以下方式导入Librosa库: ```python import librosa ``` 导入Librosa库后,就可以使用其提供的各种函数
recommend-type

设置ansible 开机自启

Ansible是一个强大的自动化运维工具,它可以用来配置和管理服务器。如果你想要在服务器启动时自动运行Ansible任务,通常会涉及到配置服务或守护进程。以下是使用Ansible设置开机自启的基本步骤: 1. **在主机上安装必要的软件**: 首先确保目标服务器上已经安装了Ansible和SSH(因为Ansible通常是通过SSH执行操作的)。如果需要,可以通过包管理器如apt、yum或zypper安装它们。 2. **编写Ansible playbook**: 创建一个YAML格式的playbook,其中包含`service`模块来管理服务。例如,你可以创建一个名为`setu
recommend-type

计算机基础知识试题与解析

"计算机基础知识试题及答案(二).doc" 这篇文档包含了计算机基础知识的多项选择题,涵盖了操作系统、硬件、数据表示、存储器、程序、病毒、计算机分类、语言等多个方面的知识。 1. 计算机系统由硬件系统和软件系统两部分组成,选项C正确。硬件包括计算机及其外部设备,而软件包括系统软件和应用软件。 2. 十六进制1000转换为十进制是4096,因此选项A正确。十六进制的1000相当于1*16^3 = 4096。 3. ENTER键是回车换行键,用于确认输入或换行,选项B正确。 4. DRAM(Dynamic Random Access Memory)是动态随机存取存储器,选项B正确,它需要周期性刷新来保持数据。 5. Bit是二进制位的简称,是计算机中数据的最小单位,选项A正确。 6. 汉字国标码GB2312-80规定每个汉字用两个字节表示,选项B正确。 7. 微机系统的开机顺序通常是先打开外部设备(如显示器、打印机等),再开启主机,选项D正确。 8. 使用高级语言编写的程序称为源程序,需要经过编译或解释才能执行,选项A正确。 9. 微机病毒是指人为设计的、具有破坏性的小程序,通常通过网络传播,选项D正确。 10. 运算器、控制器及内存的总称是CPU(Central Processing Unit),选项A正确。 11. U盘作为外存储器,断电后存储的信息不会丢失,选项A正确。 12. 财务管理软件属于应用软件,是为特定应用而开发的,选项D正确。 13. 计算机网络的最大好处是实现资源共享,选项C正确。 14. 个人计算机属于微机,选项D正确。 15. 微机唯一能直接识别和处理的语言是机器语言,它是计算机硬件可以直接执行的指令集,选项D正确。 16. 断电会丢失原存信息的存储器是半导体RAM(Random Access Memory),选项A正确。 17. 硬盘连同驱动器是一种外存储器,用于长期存储大量数据,选项B正确。 18. 在内存中,每个基本单位的唯一序号称为地址,选项B正确。 以上是对文档部分内容的详细解释,这些知识对于理解和操作计算机系统至关重要。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

【基础】网络编程入门:使用HTTP协议

![【基础】网络编程入门:使用HTTP协议](https://img-blog.csdnimg.cn/direct/4fbc6b5a6d744a519429654f56ea988e.png) # 1. 网络编程基础** **1.1 网络基础知识** 网络是连接计算机和设备的系统,允许它们交换数据和资源。它由节点(计算机、服务器、路由器等)和连接它们的数据链路组成。网络可以是局域网(LAN)、广域网(WAN)或互联网。 **1.2 TCP/IP协议栈** TCP/IP协议栈是一组通信协议,用于在网络上传输数据。它分为四层: * **链路层:**处理物理连接和数据传输。 * **网络层:
recommend-type

时间序列大模型的研究进展

时间序列大模型是近年来自然语言处理领域的一个热门研究方向,它们专注于理解和生成基于时间顺序的数据,比如文本序列、音频或视频信号。这类模型通常结合了Transformer架构(如BERT、GPT等)与循环神经网络(RNNs, LSTM)的长短期记忆能力,以捕捉序列数据中的时间依赖性。 近期的研究进展包括: 1. 长序列建模:研究人员一直在努力提高模型能够处理长序列的能力,例如M6和Turing-NLG,这些模型扩展了序列长度限制,增强了对长期依赖的理解。 2. 结合外部知识:一些模型开始融合外部知识库,如ProphetNet和D-PTM,以提升对复杂时间序列的预测精度。 3. 强化学习和